
Napsu Karmitsa | Sona Taheri | Kaisa Joki | Pauliina
Mäkinen | Adil Bagirov | Marko M. Mäkelä

Hyperparameter-free NN algorithm for
large-scale regression problems

TUCS Technical Report
No 1213, November 2020





Hyperparameter-free NN algorithm for
large-scale regression problems

Napsu Karmitsa
University of Turku
FI-20014 Turku, Finland
napsu@karmitsa.fi

Sona Taheri
RMIT University
Melbourne, Australia
sona.taheri@rmit.edu.au

Kaisa Joki
University of Turku
FI-20014 Turku, Finland
kjjoki@utu.fi

Pauliina Mäkinen
University of Turku
FI-20014 Turku, Finland
pauliina.e.makinen@gmail.com

Adil Bagirov
Federation University Australia,
Victoria, Australia
a.bagirov@federation.edu.au

Marko M. Mäkelä
University of Turku
FI-20014 Turku, Finland
makela@utu.fi

TUCS Technical Report

No 1213, November 2020



Abstract

In this paper, a new nonsmooth optimization based algorithm for solving large-scale
regression problems is introduced. The regression problem is modeled using fully-
connected feedforward neural networks with one hidden layer, the piecewise linear
activation, and the L1-loss functions. A novel constructive approach is developed for
an automated determination of the proper number of hidden nodes. The limited mem-
ory bundle method [Haarala et.al., 2004, 2007] is applied to minimize the nonsmooth
objective of the new regression problem. The proposed algorithm is evaluated using
real-world data sets with both large number of input features and large number of
samples. It is also compared with the well-known backpropagation neural network for
regression using TensorFlow. The results demonstrate the superiority of the proposed
algorithm as a predictive tool in most data sets used in our numerical experiments.

Keywords: Regression analysis, Neural networks, RELU, L1-loss function, Non-
smooth optimization, Nonconvex optimization, Limited memory bundle method.

TUCS Laboratory
Turku Optimization Group (TOpGroup)



1 Introduction

Regression models and methods are used as effective tools for prediction and approx-
imation in many real-world applications. For complex relationships between explana-
tory and response variables (input and output features), the regression models build
with the neural networks (NNS) can significantly improve the prediction power in
comparison with the other existing regression methods [37]. The most commonly
used neural networks for regression (NNR) are the feedforward backpropagation net-
work (FFBPN) [43] and the radial-basis network (RBN) [7]. The FFBPN and most
of its variants converge to only locally optimal solutions [23, 42], and they only work
under the precondition that all the functions involved in the network are differentiable.
The RBN and its modifications can be trained without local minima issues [20], but
they require a heuristic selection of parameters and hyperparameters.

There are two important components in any NNS: an activation function and an
error function, conventionally called a loss function. An NN with the most simple
linear activation function is not able to take into account all the information of the
training set resulting in a very poor outcome in the testing phase. On the other hand,
smooth (continuously differentiable) nonlinear activation functions may lead to highly
complex nonconvex loss functions. Moreover, in [44], it is shown that the usage of
smooth activation functions requires many training iterations and a large number of
hidden nodes.

In [25], it is theoretically discussed that NNS with nonsmooth activation functions
demonstrate a high performance. Among these functions, the Rectified Linear Unit
(RELU) is considered as the simplest one. Since this function is piecewise linear (i.e.
it is not differentiable at all points) its usage leads to the nonsmoothness of the loss
function. Instead of minimizing such a loss function directly, it is usually replaced
with a smoothed surrogate loss function. However, algorithms based on this approach
may become inaccurate once the size of the data and, thus, the number of smoothing
parameters, increases. Another commonly used choice to minimize the loss function
is the stochastic (sub)gradient descent method (SGD) (see e.g. [11]). Although the
SGD is in general fast, it is not accurate and may sometimes require a large number
of function and subgradient evaluations. This is due to the fact that the SGD is an
extension of the subgradient method for convex problems and NNS lead to nonconvex
problems.

The loss function can be defined using the mean absolute error (MAE or L1-norm)
or the mean squared error (MSE or L2-norm). There are at least two reasons to choose
the L1- over the L2-norm: first, the regression models with the L1-norm are more
robust to outliers than those based on the L2-norm (see, e.g., [26]); and second, the
use of the L2-norm makes the loss function with the RELU activation function more
complex than the use of the L1-norm.

The performance of the NNS is highly sensitive to the choice of the hyperparam-
eters defining the structure of the network and thus, the learning process. Indeed, a
poor selection of hyperparameters may lead to inaccurate results [24, 38]. Generally,

1



the hyperparameters can be determined either automatically or manually. Many learn-
ing systems are designed that rely on hyperparameter optimization through a combi-
nation of grid search and manual search (see e.g. [21, 33, 34]). However, tuning the
hyperparameters manually is a tedious and time consuming process. Therefore, it is
necessary to automate the calibration of the hyperparameters. Several algorithms with
varying levels of automaticity have been proposed for this purpose, for instance, in
[14, 16, 22, 40, 35, 45]. Nevertheless, there is no guarantee that the selected number
of hidden units (usually the number of nodes) is optimal in these algorithms and the
question of good hyperparameter tuning procedure still remains open.

In this paper, we introduce a new approach for modeling and solving regression
problems using fully-connected feedforward NNS with the RELU activation function,
the L1-loss function and the L1-regularization. We call this regression problem the
RELU-NNR problem and the algorithm for solving it is named as the LMBNNR al-
gorithm. We consider the NN with only one hidden layer. Nevertheless, the number
of hidden nodes is determined automatically using a novel constructive approach and
an automated stopping procedure (ASP). More precisely, the number of hidden nodes
is constructed incrementally starting from one node and the ASP, based on the intel-
ligent selection of initial weights and the regularization parameter, is applied at each
iteration of the constructive algorithm to stop training if the model is not improving.
Thus, there is no tuneable hyperparameters in the proposed algorithm, and it can be
considered as a hyperparameter-free method.

The RELU-NNR problem is both nonconvex and nonsmooth1. The nonconvexity
is addressed as a part of the constructive approach. That is, the solution of the previous
iteration is used to construct new initial weights. To solve the underlying nonsmooth
optimization problems we apply the limited memory bundle method (LMBM) intro-
duced in [17, 18, 27]. We utilize this method since it is one of the “not so many”
algorithms capable of handling large dimensions, nonconvexity, and nonsmoothness.
In addition, the LMBM has already proved itself in solving other machine learning
problems such as clustering [29, 4], clusterwise linear regression [28] and missing
value imputation [30].

The proposed LMBNNR algorithm has some remarkable features including:

• it is hyperparameter-free due to the automated determination of the proper
number of nodes;

• it is applicable to large-scale regression problems;

• it is an efficient and accurate predictive tool.

The structure of the paper is as follows. Section 2 provides some theoretical back-
ground on nonsmooth optimization, NNS, and regression analysis. The problem
statement — the RELU-NNR problem — is given in Section 3. In Section 4, the
LMBNNR algorithm is introduced together with the ASP. In Section 5 we evaluate

1Note that RELU itself is nonsmooth. Thus, even if we used a smooth loss function and regulariza-
tion, the underlying optimization problem would still be nonsmooth.

2



the accuracy of the ASP as well as the performance of the LMBNNR algorithm and
compare the proposed algorithm with the backpropagation NNR using TensorFlow.
Finally, Section 6 concludes the paper.

2 Theoretical background and notations
In this section we provide some theoretical background and notations that are used
throughout the paper.

2.1 Nonsmooth optimization
Nonsmooth optimization refers to the general problem of minimizing (or maximizing)
functions that are typically not differentiable at their minimizers (maximizers) [3].
We denote the n-dimensional Euclidean space by Rn, the inner product by x>y =∑n

i=1 xiyi, where x, y ∈ Rn, and the associated norms by ‖x‖2 = (x>x)1/2 and
‖x‖1 =

∑n
i=1 |xi|.

A function f : Rn → R is called locally Lipschitz continuous on Rn if for any
bounded subset X ⊂ Rn there exists L > 0 such that

|f(x)− f(y)| ≤ L‖x− y‖2 for all x, y ∈ X.

The Clarke’s subdifferential ∂f(x) of a locally Lipschitz continuous function f :
Rn → R at a point x ∈ Rn is given by [3, 10]

∂f(x) = conv
{

lim
i→∞
∇f(xi) | xi → x and ∇f(xi) exists

}
,

where “conv” denotes the convex hull of a set. A vector ξ ∈ ∂f(x) is called a sub-
gradient. The point x∗ ∈ Rn is stationary, if 0 ∈ ∂f(x∗). Note that stationarity is a
necessary condition for local optimality.

2.2 Neural networks
Generally, NNS can be divided into feedforward or recurrent networks based on their
network topology. An NN is feedforward if there exists an ordering of nodes such that
every node is only connected to nodes further down in the order. If such an ordering
does not exist, the network is recurrent having one or more feedback loops allowing
the information travel in both directions. The feedforward NN can be visualized as
a layered network. The first and the last layers are called the input and the output
layers, respectively. Intermediate layers are called hidden layers. The dimension of
input features determines the size of the input layer. The number and size of the
hidden layers — the hyperparameters of the network — can be chosen more freely.
The output layer consists of only one node in regression problems. In addition to
these nodes, each layer of the NNS contains a bias node. A fully-connected NNS are

3



B

Input layer Hidden layer Output layer

B

P
.
.
.

.

.

.

Figure 1: A simple NN model with one output, one hidden layer and H nodes.

comprised of layers consisting of nodes and artificial synapses with weights connecting
each pair of nodes in the consecutive layers of the NNS [1]. Figure 1 shows the
standard formulation of the fully-connected feedforward NNS with one hidden layer.

For a given node, the inputs are multiplied by the weights associated with the node
and summed together. This value is referred to as a summed activation of the node.
The summed activation is then transformed via an activation function and it defines
the specific output of the node. The simplest activation function is linear. Although
a NN with the linear activation function can be easily trained it cannot learn com-
plex mapping functions. Therefore, in order to learn more complex structures in data
the nonlinear activation functions are preferred. Two widely used nonlinear activation
functions are the sigmoid and the hyperbolic tangent activation functions [1]. How-
ever, a general problem with both these activation functions is that they saturate. That
is, the input to the activation function may reach a flat region of the function, so addi-
tional changes to the input will have little or no effect on the output.

Lately, the piecewise linear activation function RELU has become the default ac-
tivation function for many types of NNS due to the computational advantages of its
simple structure and, thus, strong training ability. RELU is nonsmooth but it has a
simple mathematical form of f(x) = max {0, x}. RELU provides more sensitivity to
the summed activation of the node and avoids easy saturation. Thus, RELU is prefer-
able for the training of complex relationships in NNS compared to traditional smooth
sigmoid and tanh functions.

As a part of the learning process in the NNS, the error for the current state of the
model must be estimated repeatedly. This requires the choice of a loss function, that is
used to estimate the error in the model such that the weights can be updated to reduce
the loss on the next evaluation. The default loss function for regression problems is
the MSE (L2 norm). It is the average of the squared differences between the predicted
and the actual values. However, the MSE may not perform well if the distribution of
the target variable is mostly Gaussian with many outliers. In such a case, the MAE

4



(L1 norm) is an appropriate loss function as it is more robust to outliers. In its turn,
the MAE is calculated as an average of the absolute difference between the predicted
and actual values.

2.3 Neural networks for regression
Let A be a given data set with n samples: A = {(xi, yi) ∈ Rm × R | i = 1, . . . , n},
where xi ∈ Rm are values of m input features and yi ∈ R are their outputs. In
regression analysis, the aim is to find a function ϕ : Rm → R such that ϕ(xi) is a “good
approximation” of yi. In other words, the following regression error is minimized

n∑
i=1

|ϕ(xi)− yi|p, p > 0.

Applying NNS to the regression problem can lead significantly higher predictive
power compared to a traditional regression. NNS takes several input features (in-
dependent variables), multiplies them by their weights (coefficients), and runs them
through an activation function and a loss function, which closely resembles the re-
gression error. Once the NN is trained the optimal weights for the model (regression
coefficients) are found to fit the data. Therefore, the NN can simulate a regression
error. In addition, it can model more and more complex scenarios by increasing the
number of nodes. This concept has been proved in the universal approximation the-
orem stating that a single hidden layer feedforward network of sufficient complexity
is able to approximate any given regression function on a compact set to an arbitrary
degree [47].

Let us denote the number of hidden nodes in the NNS by H and let w be the
weight connection vector and ws be its element in the index place s, where s is the
index triplet s = abc. Then wabc states the weight that connects a-th layer’s b-th node
to (a+ 1)-th layer’s c-th node (see Figure 1). In addition, let us denote by P an output
index value for the weights which connect the hidden layer’s nodes to the NN’s output
node. It is necessary to use a special notation for the connection weights linking these
nodes since a prediction is produced by taking a weighted sum of the output signals of
the hidden layer and, in contrast to the hidden nodes, no activation function is applied
in the output node. There are no signals coming to the bias terms as an input. Thus,
the only connection weights linking these terms are the ones starting from them. In
order to assort these differently behaving connection weights, we use B to denote the
middle index value for the weights connecting some layer’s bias term to some node
in the next layer of the NN. The bias terms with this index can be thought as the last
node in each layer.

The weight connection vector w for m input features and H hidden nodes has
H(m + 2) + 1 components. For the sake of clarity, we organize w = wH in an
“increasing order” as follows:

wH = (w011,w012, . . . , w01H , w021, w022, . . . , w02H , . . . , w0m1, w0m2, . . . , w0mH ,

w0B1, w0B2, . . . , w0BH , w11P , w12P , . . . , w1HP , w1BP )>.

5



3 Nonsmooth optimization model of RELU-NNR

In this section we formulate the nonsmooth optimization model for the RELU-NNR
problem. For simplicity, using the notations and definitions given in Section 2, we
define the following:

sij = w0Bj +
m∑
k=1

w0kjx
i
k, i = 1, . . . , n, j = 1, . . . , H, and

ti = w1BP +
H∑
j=1

w1jP max{0, sij}, i = 1, . . . , n,

where xik denotes the k-th coordinate of the i-th sample. Then the loss function using
the L1-norm is

FH(w) =
n∑

i=1

|yi − ti|. (1)

To avoid overfitting that may occur in the learning process of the NN — situation
when the NN is so closely fitted to the training set that it is difficult to generalize and
make predictions for a new data — we add an extra element to the loss function defined
in (1). In most cases, the L1-regularization is preferable as it reduces the weight values
of less important input features, and also, it is robust and insensitive to outliers. Thus,
we rewrite (1) as

fH(w) = FH(w) + ρH‖w‖1, (2)

where ρH > 0 is an automatically updated regularization parameter (to be de-
scribed later). Therefore, we represent the nonsmooth optimization formulation for
the RELU-NNR as follows:{

minimize fH(w)

subject to w ∈ RH(m+2)+1.
(3)

This optimization problem is nonsmooth and nonconvex. To solve it, we introduce a
new algorithm in the next section. First we describe an accessible way to calculate (an
approximate) subgradient of the objective fH given in (2).

Since the objective fH — obtained as a sum of the function FH and the convex
regularization term ρH‖w‖1 — is both nonconvex and nonsmooth and it may not be
subdifferentially regular (see [3]), the calculation of the exact subgradient may not
be a trivial task at a nondifferentiable point. This is particularly true when we use
Clarke’s subdifferential. The difficulties arise from FH which is a sum of nonsmooth
nonconvex functions (see (1)). When we calculate an arbitrary subgradient of each
nonconvex nonsmooth partial function |yi− ti| at a nondifferentiable point w, the sum
of these subgradients does not necessarily belong to the subdifferential of FH [3], and
therefore, we can only guarantee to have an approximation of an exact subgradient.

6



However, this approximation is much easier to calculate than the exact subgradient. In
addition, the use of approximated subgradients instead of exact ones has not caused
any noticeable problems in the numerical experiments.

Next, we present more closely how the approximated subgradient of fH is ob-
tained. We start by defining the following index sets:

I+ = { i | yi − pi ≥ 0, i = 1, . . . , n},
I− = { i | yi − pi < 0, i = 1, . . . , n},
J+
i = { j | sij ≥ 0, j = 1, . . . , H} for i = 1, . . . , n,

J−i = { j | sij < 0, j = 1, . . . , H} for i = 1, . . . , n,

By utilizing these sets, we can rewrite the function FH in the form

FH(w) =
∑
i∈I+

(
yi − ti

)
+
∑
i∈I−

(
− yi + ti

)
,

where

ti = ti(w) =
(
w1BP +

∑
j∈J+

i

w1jP sij

)
.

In order to construct an approximation of the subgradient of FH at a point w, we first
give an approximated subgradient ξi ∈ RH(m+2)+1 of the function ti. This subgradient
can be written as

ξi = (ξi011, ξ
i
012, . . . , ξ

i
01H , ξ

i
021, ξ

i
022, . . . , ξ

i
02H , . . . , ξ

i
0m1, ξ

i
0m2, . . . , ξ

i
0mH

ξi0B1, ξ
i
0B2, . . . , ξ

i
0BH , ξ

i
11P , ξ

i
12P , . . . , ξ

i
1HP , ξ

i
1BP )>,

where

ξi0kj =

{
w1jPx

i
k, if j ∈ J+

i

0, otherwise
for k = 1, . . . ,m and j = 1, . . . , H,

ξi0Bj =

{
wijP , if j ∈ J+

i

0, otherwise
for j = 1, . . . , H,

ξi1jP =

{
sij, if j ∈ J+

i

0, otherwise
for j = 1, . . . , H,

ξi1BP = 1.

The approximated subgradient ξF of FH at a point w can then be given with the for-
mula

ξF =
∑
i∈I+
−ξi +

∑
i∈I−

ξi.

7



For the convex regularization term, one possible exact subgradient ξreg ∈ RH(m+2)+1

at a point w can be stated with components

ξregs =

{
ρH , if ws ≥ 0

−ρH , otherwise
for s = 1, . . . , H(m+ 2) + 1.

Finally, by combining the above results, the approximated subgradient ξf of the ob-
jective function fH at a point w can be obtained by setting

ξf = ξF + ξreg.

Note that ξf is an exact subgradient of fH whenever the calculations are done at a dif-
ferentiable point and by Rademacher’s Theorem a locally Lipschitz continuous func-
tion is differentiable almost everywhere [13].

4 The proposed LMBNNR algorithm
In this section we propose the new LMBNNR algorithm for solving the RELU-NNR
problem. In addition, we recall the LMBM in the form used here and profess its
convergence in the case of the RELU-NNR problem.

The algorithm LMBNNR computes nodes incrementally and uses the ASP to de-
tect the proper number of nodes. More precisely, it starts with one node in the hidden
layer and adds a new node to this layer at each iteration of the algorithm. It is worth
of noting that each time a node is added to the hidden layer, m + 2 new connection
weights appear. Starting from initial weight w1 ∈ Rm+3, the LMBNNR algorithm
applies the LMBM to solve the underlying RELU-NNR problem. The solution to
this problem is employed to generate initial weights for the next iteration. This proce-
dure is repeated until the ASP is activated or the maximum number of hidden nodes
Hmax is reached. The ASP is designed based on the value of the objective function.
That is if the value of the objective is not improved in three subsequent iterations, then
the LMBNNR algorithm is stopped. Note that the initialization of weights and the
regularization parameter (described below) are determined such a way that we have
fH ≥ fH+1 for all H = 1, . . . , Hmax.

We select the initial weights w1 as

w1 =
( 1

m
,

1

m
, . . . ,

1

m
, 0, 1, 0

)>
∈ Rm+3.

Here the first m components are the weights from the nodes of the input layer to the
node of the hidden layer. The weights from both the bias terms w1BP and w0B1 are
set to zero and the weight w11P from the hidden layer to the output is set to one. Fig-
ure 2 illustrates the weights in different iterations and the progress of the LMBNNR
algorithm.

8



. . .

B

Input layer Hidden layer Output layer

B

P

.

.

.

Iteration 1

B

Input layer Hidden layer Output layer

B

P

.

.

.

Iteration 2

B

Input layer Hidden layer Output layer

B

P

Iteration H

.

.

.
.
.
.

Figure 2: Construction of model in NNR problem by the LMBNNR.

At the subsequent iteration H (i.e. when we add a new node to the hidden layer),
H = 2, . . . , Hfinal of the LMBNNR algorithm — Hfinal is the final number of hidden
nodes — we initialize the weights wH as follows: let w̄H−1 be the solution of the
previous RELU-NNR problem. First we set weights from all but the last two hidden
nodes to the output layer as

wH
1jP = w̄H−1

1jP for all j = 1, . . . , H − 2. and (4)

wH
1BP = w̄H−1

1BP

and the weights from the input layer to all but the last two hidden nodes as

wH
0ij = w̄H−1

0ij for all i = 1, . . . ,m, j = 1, . . . , H − 2, and (5)

wH
0Bj = w̄H−1

0Bj for all j = 1, . . . , H − 2.

Note that in the case of H = 2 we simply set wH
1BP = w̄H−1

1BP and otherwise we skip
this step as there is only two nodes in the hidden layer. Then we take the most recent
weights obtained at the previous iteration of the LMBNNR algorithm and split these
weights to get initial weights connecting the input layer and the last two hidden nodes
of the current iteration, that is,

wH
0i(H−1) =

1

2
w̄H−1

0i(H−1) and wH
0iH = wH

0i(H−1) for all i = 1, . . . ,m, (6)

wH
0B(H−1) =

1

2
w̄H−1

0B(H−1) and wH
0BH = wH

0B(H−1).

Finally, we set weights from the last two hidden nodes to the output as

wH
1(H−1)P = w̄H−1

1(H−1)P and wH
1HP = wH

1(H−1)P . (7)

9



To update the regularization parameter ρH for H = 2, . . . , Hfinal, we use the value
of the objective at the previous iteration and the weight connecting the current node of
the hidden layer to the output as follows:

ρH = ρH−1 ·
fH−1

fH−1 + |w1HP |
, (8)

with ρ1 = 1.0.

Now we are ready to give the LMBNNR algorithm.

Algorithm 1: LMBNNR
Data: Data set A, the number of input features m, and the maximum number of

hidden nodes Hmax > 0.
Result: The final number of hidden nodes Hfinal and the solutions w̄H to the

H-th RELU-NNR problem, H = 1, . . . , Hfinal.
Set the initial weights w1 ∈ Rm+3 and the regularization parameter ρ1 = 1.0;
Set H = 1;
Use the LMBM (Algorithm 2) to solve the RELU-NNR problem (3) with one
hidden node starting from w1. Denote the solution by w̄1 and the
corresponding value of the objective by f1;

while H < Hmax do
Set H = H + 1;
Initialize weights wH ∈ RH(m+2)+1 using the previous solution w̄H−1 and
equations (4) – (7);

Update the regularization parameter ρH using (8);
Use the LMBM to solve the RELU-NNR problem (3) with H hidden
nodes starting from wH . Denote the solution by w̄H and the corresponding
value of the objective by fH ;

if H > 2 then
if fH−2 = fH then

Set Hfinal = H;
STOP with the current model;

Set Hfinal = Hmax;
STOP with the current model.

REMARK 4.1. With the used initialization of weights wH and the regularization pa-
rameter ρH we always have fH ≥ fH+1 forH = 1, . . . , Hmax. The stopping procedure
is activated if the value of the objective is not improved in three subsequent iterations.
In other words, if adding more nodes to the hidden layer does not give us a better
model after optimization of the weights.

REMARK 4.2. As there is no tuneable hyperparameters in the LMBNNR algorithm
there is no need for a validation set either. It is enough to choose Hmax big enough
(see Section 5 for suitable values).

10



Next we describe the LMBM, with a slight modification to its original version, for
solving the underlying RELU-NNR problems in the LMBNNR algorithm. This
method is called at every iteration of the LMBNNR. For more details of the LMBM
we refer to [17, 18, 27].

Algorithm 2: LMBM for RELU-NNR problems
Data: wH

1 ∈ RH(m+2)+1, D0 = I , m̂c ≥ 3, kmax > 0, and ε > 0.
Result: Final weight vector wH

k .
Compute ξ1 ∈ ∂fH(wH

1 );
Set k = 1, k̃ = 1, d1 = −ξ1, ξ̃1 = ξ1, and β̃1 = 0;
while k ≤ kmax and the termination condition −ξ̃ >k dk + 2β̃k ≤ ε is not met do

Find step sizes tkL and tkR, and the subgradient locality measure βk+1;
Set wH

k+1 = wH
k + tkLdk and vk+1 = wH

k + tkRdk;
Evaluate fH(wH

k+1) and ξk+1 ∈ ∂fH(vk+1);
Store the new correction vectors sk = vk+1 − wH

k and uk = ξk+1 − ξk̃;
Set m̂k = min{k, m̂c};
if tkL > 0 then (Serious step)

Compute the search direction dk+1 = −Dkξk+1, where Dk is calculated
using the L-BFGS update with m̂k most recent correction vectors;

Set k̃ = k + 1 and β̃k+1 = 0;
else (Null step)

Determine multipliers λki satisfying λki ≥ 0 for all i ∈ {1, 2, 3}, and∑3
i=1 λ

k
i = 1 that minimize the function

ϕ(λ1, λ2, λ3) =[λ1ξk̃ + λ2ξk+1 + λ3ξ̃k ]>Dk−1[λ1ξk̃ + λ2ξk+1 + λ3ξ̃k ]

+ 2(λ2βk+1 + λ3β̃k)

and compute the aggregate values

ξ̃k+1 = λk1ξk̃ + λk2ξk+1 + λk3 ξ̃k and β̃k+1 = λk2βk+1 + λk3β̃k;

Compute the search direction dk+1 = −Dkξ̃k+1, where Dk is calculated
using the L-SR1 update with m̂k most recent correction vectors;

Set k = k + 1;

REMARK 4.3. We use a nonmonotone line search [27] to find step sizes tkL and tkR
when Algorithm 2 is combined with Algorithm 1. In addition, as in [2] we use a
relatively low maximum number of iterations kmax to avoid overfitting.

REMARK 4.4. The search direction in Algorithm 2 is computed using the L-BFGS
update after a serious step and the L-SR1 update after a null step. The updating for-
mulae are similar to those in the classical limited memory variable metric methods
for smooth optimization [9]. Nevertheless, the correction vectors uk and sk are ob-
tained using subgradients instead of gradients and the auxiliary point instead of the
new iteration point.

11



REMARK 4.5. The classical linearization error may be negative in the case of a non-
convex objective function. Therefore, a subgradient locality measure βk, which is a
generalization of the linearization error for nonconvex functions (see e.g. [32]), is used
in Algorithm 2.

We now recall convergence properties of the LMBM in case of RELU-NNR prob-
lems. The objective function fH : RH(m+2)+1 → R is locally Lipschitz continuous
and upper semismooth (see e.g. [6]). In addition, the level set {wH ∈ RH(m+2)+1 |
fH(wH) ≤ fH(wH

1 ) } is bounded for every starting weight wH
1 ∈ RH(m+2)+1. Thus,

all the assumptions needed for the global convergence of the original LMBM are
satisfied provided that the computed subgradients belong to the subdifferential. The
theorems on the convergence of the LMBM proved in [18, 27] can be modified for the
RELU-NNR problems as follows.

THEOREM 4.1. If the LMBM terminates after a finite number of iterations, say at
iteration k, then the weight wH

k is a stationary point of the RELU-NNR problem (3).

THEOREM 4.2. Every accumulation point w̄H of the sequence {wH
k } generated by the

LMBM is a stationary point of the RELU-NNR problem (3).

5 Numerical experiments
Using some real-world data sets and performance measures, we evaluate the perfor-
mance of the proposed LMBNNR algorithm and compare it with the well-known
backpropagation NNR algorithm utilizing TensorFlow2.
Data sets and performance measures. Information about the data sets is given in
Table 1 and the references therein. The data sets are divided (randomly) to training
(80%) and test (20%) sets. To get comparable results we use the same training and test
sets with both the methods. We apply the following performance measures: root mean
square error (RMSE), mean absolute error (MAE), coefficient of determination (R2),
and Pearson’s correlation coefficient (r) (see Appendix for more details).
Used Software and parameters. Computational experiments are carried out on
iMac (macOS Mojave 10.14.6), 4.0 GHz Intel(R) Core(TM) i7 machine with 16 GB
of RAM. The proposed algorithm LMBNNR is implemented in Fortran 2003. The
source code is available at http://napsu.karmitsa/lmbnnr. There is no
tuneable parameters in the LMBNNR algorithm. Although we set the maximum num-
ber of nodes as

Hmax =

{
200, n×m < 106

100, otherwise,
(9)

where n and m are the number of samples and features, respectively. In addition, the
LMBNNR algorithm always produces the results with the smaller number of nodes
as a side product.

2https://www.tensorflow.org/

12

http://napsu.karmitsa/lmbnnr
https://www.tensorflow.org/


Table 1: Data
Data set No. of samples No. of features Reference

Combined cycle power plant 9 568 5 [46, 31]
Airfoil self-noise 1 503 6 [12]
Concrete compressive strength 1 030 9 [48]
Physicochemical properties 45 730 10 [12]

of protein tertiary structure
Boston housing data 506 14 [19]
SGEMM GPU kernel performance(1) 241 600 15 [5, 39]
MiniBooNE PID 130 064 50 [12]
Online news popularity 39 644 59 [15]
Residential building data set(1) 372 108 [41]
BlogFeedback(2) 52 397 281 [8]
ISOLET 7 797 618 [12]
Greenhouse gas observing network 2 921 5 232 [36]

(1) Used with the first output feature.

(2) Training data set.

The backpropagation NNR algorithm is implemented using TensorFlow in Google
Colab. We use the RELU activation for the hidden layer, the linear activation for the
output layer, and the MSE loss function. The reason to choose the MSE is that it usu-
ally works better with TensorFlow than the MAE used in the LMBNNR algorithm.
This is probably due to the smoothness of the MSE. Naturally, with the proposed
algorithm we do not have any problems with the nonsmoothness as it applies the non-
smooth optimization solver LMBM. In TensorFlow, the Keras optimizer SGD with
the default parameters and the following three different combinations of batch size
(the number of samples that will be propagated through the network) and epochs (the
number of complete passes through the training data) are used3:

1. Mini-Batch Gradient Descent (TensorFlow1): batch size = 32 and no. of
epochs = 1. These are the default values for TensorFlow;

2. Batch Gradient Descent (TensorFlow2): batch size = size of the training data
and no. of epochs = 1. These choices mimic the proposed method;

3. SGD (TensorFlow3): batch size = 1 and no. of epochs = 100 for data sets
with less than 100 000 samples and no. of epochs = 10 for a larger data. We
reduce the number of epochs in the latter case due to a very long computa-
tional times and the fact that the larger number of epochs often leads to NaN
loss function value. The aim of this version is to be as stochastic version of
TensorFlow as possible.

3https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/

13

https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/


The number of hidden nodes is set to 2, 5, 10, 50, 100, 200, 500 and 5 000. We
run TensorFlow for the RELU-NNR problems with these numbers repeatedly. Due
to the stochastic nature of the SGD used as an optimizer in TensorFlow, we run all
the problems ten times and report the average, whereas in the proposed algorithm we
solve the RELU-NNR problem only once per each data.

Results and discussion. Next we present the results of our numerical experiments.
The results are given in Tables 2–13 and in Appendix. In these tables we only pro-
vide the RMSE of the test set and the used CPU time. The results using other three
performance measures are given in Appendix.

To evaluate the reliability of the ASP, we forced the LMBNNR algorithm to solve
RELU-NNR problems up to the maximum number of nodes. Nevertheless, in the
tables we report both the results obtained using the maximum number of nodes and
also applying the ASP. The best solution with respect to the test set’s RMSE in the
former case is denoted by “Best”, and the solution obtained in the latter case is denoted
by “ASP”.

The best results (the smallest RSME for the test set) obtained with TensorFlow
are given in bolded text to make the tables more illustrative in one sight. Naturally,
in the real-world predictions we would not know which result is the best in either
of the tested algorithms. To make the comparison more challenging to the proposed
LMBNNR algorithm we mainly compare the result that it gives with the ASP to the
best result obtained with any version of TensorFlow. Note that for TensorFlow, the
results reported (including CPU times) are averaged over the ten runs unless some of
the runs lead to NaN loss function values. In this case, the results are averaged over the
successful runs. If there is “NaN” in the tables, then all ten runs lead to NaN solution.
The results using other three evaluation criteria (MAE, CE, and r), given in Appendix,
support the conclusions drawn from the RMSE although MAE often indicates slightly
better performance of the LMBNNR algorithm than RMSE. This is probably due to
the used loss function and/or the regularization term.

Table 2: RMSE for test set and CPU times in Combined cycle power plant data.
LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU

2 4.433 0.15 8.472 1.45 19.061 0.51 4.582 1036.42
5 4.267 0.64 6.091 0.97 20.547 0.58 4.415 790.27
10 4.216 2.13 5.784 0.78 17.809 0.47 4.278 650.95
50 4.137 39.81 4.712 1.04 18.790 0.66 4.215 679.02
100 4.140 145.54 4.612 0.65 17.213 0.38 4.167 639.65
200 4.128 623.60 4.566 0.66 17.649 0.69 4.190 691.76
500 – – 4.534 1.00 16.514 0.63 4.168 761.36
5000 – – 4.533 1.81 16.710 1.53 4.205 897.52

Best: H = 198 4.128 610.95
ASP: H = 54 4.137 45.45

14



Table 3: RMSE for test set and CPU times in Airfoil self-noise data.
LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU

2 4.907 0.03 6.756 0.36 10.129 0.29 4.387 102.65
5 4.407 0.11 6.580 0.35 9.465 0.30 3.688 102.13
10 4.410 0.32 5.888 0.35 8.950 0.33 2.804 101.01
50 4.344 7.46 5.595 0.34 7.114 0.30 2.386 100.87
100 1.818 33.51 5.516 0.40 6.840 0.33 2.018 102.91
200 1.804 124.42 5.346 0.38 6.967 0.32 2.044 108.73
500 – – 5.319 0.35 6.743 0.30 2.194 116.60
5000 – – 5.299 0.42 6.689 0.37 2.035 133.05

Best: H = 196 1.804 119.98
ASP: H = 107 1.818 37.50

Table 4: RMSE for test set and CPU times in Concrete compressive strength data.
LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU

2 11.407 0.02 17.554 0.37 30.305 0.33 7.659 70.00
5 10.869 0.10 15.736 0.37 23.220 0.32 6.372 74.19
10 6.665 0.36 15.156 0.38 23.949 0.36 5.577 71.78
50 6.429 5.75 13.729 0.39 17.824 0.35 4.918 74.42
100 6.095 23.43 13.277 0.39 18.069 0.31 5.019 72.87
200 6.095 61.74 12.472 0.36 17.365 0.31 4.807 76.91
500 – – 12.379 0.40 16.515 0.42 4.771 79.92
5000 – – 12.362 0.45 16.496 0.41 4.468 94.33

Best: H = 72 6.073 10.22
ASP: H = 17 6.666 0.84

Table 5: RMSE for test set and CPU times in Physicochemical properties of protein data.
LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU

2 5.304 1.15 5.223 2.29 7.838 0.71 5.127(1) 3368.54
5 5.095 5.24 5.121 2.14 8.366 0.72 NaN –
10 5.062 18.81 5.082 2.09 8.168 0.73 4.856(2) 3356.05
50 4.795 383.64 4.975 2.05 6.784 0.73 NaN –
100 4.795 924.16 4.952 1.86 6.466 0.69 NaN –
200 4.790 3653.38 4.941 2.31 6.155 0.77 NaN –
500 – – 4.972 3.06 6.130 1.07 NaN –
5000 – – 4.942 5.79 6.043 4.68 NaN –

Best: H = 181 4.790 2711.36
ASP: H = 62 4.795 557.15

(1) 2/10 runs led to NaN loss function value. The results reported are averaged over the existing eight solutions.
(2) 8/10 runs led to NaN loss function value. The results reported are averaged over the existing two solutions.

15



Table 6: RMSE for test set and CPU times in Boston housing data.
LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU

2 5.547 0.02 10.983 0.47 13.335 0.33 4.675 40.02
5 4.392 0.07 9.345 0.49 12.203 0.33 4.019 33.65
10 3.585 0.27 8.753 0.51 12.663 0.32 3.936 34.16
50 3.895 4.92 8.061 0.49 10.831 0.33 3.784 35.72
100 3.896 12.98 7.702 0.54 10.636 0.29 3.794 37.22
200 3.896 43.41 7.498 0.33 10.516 0.55 3.609 38.10
500 – – 7.699 0.47 10.410 0.32 3.656 38.44
5000 – – 7.625 0.50 9.956 0.37 3.669 47.45

Best: H = 8 3.462 0.17
ASP: H = 22 3.603 1.01

Table 7: RMSE for test set and CPU times in SGEMM GPU kernel performance data.
LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU

2 223.175 7.15 168.971 8.11 515.647 2.15 148.531 1536.53
5 116.352 30.07 128.186 7.98 549.201 2.18 105.851 1812.15
10 116.352 84.98 116.195 8.02 502.793 2.14 78.309 1839.19
50 77.631 2344.09 108.867 8.09 429.332 2.32 43.959 1669.78
100 75.102 9935.67 106.440 8.09 402.935 2.31 41.323 1809.20
200 – – 104.307 8.44 385.360 2.52 37.311 1835.75
500 – – 102.033 10.12 383.167 3.25 34.283 1679.94
5000 – – 101.886 23.86 367.074 23.83 28.524 2243.39

Best: H = 100 75.102 9935.67
ASP: H = 8 116.352 62.77

Table 8: RMSE for test set and CPU times in MiniBooNE PID data.
LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU

2 23.257 14.07 35888.307 4.61 7538.550 1.36 NaN –
5 14.992 62.92 5419340.282(1) 4.72 5109.595 1.34 NaN –
10 12.969 204.85 1127040.353(2) 4.46 7753.198 1.35 NaN –
50 9.565 3269.12 49334345.329(3) 4.54 5167.114 1.43 NaN –
100 9.517 10983.33 89795765.713(3) 4.98 8497.345 1.62 NaN –
200 – – NaN – 5295.939 1.61 NaN –
500 – – 4089459.935(3) 5.80 3522.259 2.28 NaN –
5000 – – NaN – 2849.433 15.03 NaN –

Best: H = 95 9.517 10200.99
ASP: H = 98 9.517 10668.32

(1) 2/10 runs led to NaN loss function value. The results are averaged over the existing eight solutions.
(2) 3/10 runs led to NaN loss function value. The results are averaged over the existing seven solutions.
(3) 9/10 runs led to NaN loss function value. The result of the one “successful” run is given here.

16



Table 9: RMSE for test set and CPU times in Online news popularity data.

LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU

2 12387.232 4.92 12301.201 1.68 15701.632 0.63 12475.792(1) 2664.11
5 12377.297 23.32 12304.054 1.65 18562.269 0.65 NaN –
10 12363.852 78.77 12351.966 1.62 18095.866 0.69 NaN –
50 12349.854 1671.91 12670.856 1.77 16461.908 0.67 NaN –
100 12345.489 6316.63 12714.957 1.78 14731.393 0.68 NaN –
200 – – 12937.682 1.80 13977.354 0.74 NaN –
500 – – 12519.334 2.10 13089.170 0.91 NaN –
5000 – – 12322.533 6.27 12364.057 3.52 NaN –

Best: H = 99 12345.474 6218.10
ASP: H = 100 12345.489 6316.63

(1) 7/10 runs led to NaN loss function value. The results are averaged over the existing three solutions.

Table 10: RMSE for test set and CPU times in Residential building data.
LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU

2 238.303 0.09 1163.959 0.54 1635.840 0.32 236.870(1) 25.92
5 239.517 0.39 1048.945 0.35 1350.816 0.33 192.679(2) 25.93
10 153.462 1.47 1046.231 0.36 1524.374 0.31 155.138(3) 26.91
50 156.246 27.89 1014.723 0.35 1217.393 0.32 148.185(3) 27.61
100 156.246 77.18 998.603 0.36 1119.603 0.33 NaN –
200 156.246 276.56 956.511 0.35 1018.663 0.31 NaN –
500 – – 972.945 0.35 998.178 0.33 NaN –
5000 – – 775.801 0.45 916.629 0.40 NaN –

Best: H = 10 153.462 1.47
ASP: H = 20 154.350 5.80

(1) 2/10 runs led to NaN loss function value. The results reported are averaged over the existing eight solutions.
(2) 1/10 runs led to NaN loss function value. The results reported are averaged over the existing nine solutions.
(3) 4/10 runs led to NaN loss function value. The results reported are averaged over the existing six solutions.

Table 11: RMSE for test set and CPU times in BlogFeedback data.
LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU

2 28.725 20.74 NaN – NaN – NaN –
5 27.611 99.42 NaN – NaN – NaN –
10 26.832 351.79 NaN – NaN – NaN –
50 25.090 8615.21 NaN – NaN – NaN –
100 24.960 34350.20 NaN – NaN – NaN –
200 – – NaN – NaN – NaN –
500 – – NaN – NaN – NaN –
5000 – – NaN – NaN – NaN –

Best: H = 100 24.960 34350.20
ASP: H = 95 24.961 31135.05

17



Table 12: RMSE for test set and CPU times in ISOLET data.
LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU

2 4.896 12.08 5.324 0.71 9.246 0.42 NaN –
5 4.068 57.26 4.909 0.68 11.008 0.43 NaN –
10 4.112 203.95 4.761 0.68 9.896 0.42 NaN –
50 4.332 4582.67 4.686 0.74 9.745 0.45 NaN –
100 4.320 14882.22 4.662 0.78 9.654 0.46 NaN –
200 – – 4.660 0.87 9.043 0.50 NaN –
500 – – 4.833 1.20 9.227 0.66 NaN –
5000 – – NaN – 8.221 2.900 NaN –

Best: H = 6 4.065 79.48
ASP: H = 84 4.320 12411.66

Table 13: RMSE for test set and CPU times in Greenhouse gas observing network data.
LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU

2 23.170 37.25 67.654(1) 0.70 362.121 0.58 NaN –
5 23.398 179.15 NaN – 315.623 0.54 NaN –
10 22.896 675.49 NaN – 506.358 0.59 NaN –
50 23.629 10944.60 NaN – 488.828 0.84 NaN –
100 23.630 32018.64 NaN – 455.618 0.68 NaN –
200 – – NaN – 493.253 0.80 NaN –
500 – – NaN – 576.689 1.55 NaN –
5000 – – NaN – 1189.710 10.83 NaN –

Best: H = 9 22.851 552.48
ASP: H = 36 23.629 7615.43

(1) 4/10 runs led to NaN loss function value. The results reported are averaged over the existing six solutions.

The predictions with the proposed LMBNNR algorithm in termination are better
than those of any version of TensorFlow in 8 data sets out of 12. Namely, in Combined
cycle power plant, Airfoil self-noise, Physicochemical properties of protein tertiary
structure, Boston housing, MinBooNE PID, BlogFeedback, ISOLET, and Greenhouse
gas observing network data.

In other 4 data sets the results obtained by TensorFlow are slightly better than
those by LMBNNR. In Online news popularity the LMBNNR algorithm predicts
worse than TensorFlow1 with 2 or 5 nodes (see Table 9). However, the deviation in
the predictions given by TensorFlow1 as well as the worse predictions obtained with
more nodes, and the comparison with respect to MAE (see Appendix Table 21) make
the proposed algorithm an advisable choice also in this data set.

In Residential building data the prediction obtained with TensorFlow3 with 50
nodes is slightly more accurate than the one obtained with LMBNNR (see Table 10).
However, 4 of 10 runs with TensorFlow3 with 50 nodes leads to NaN solution, thus it
may easily happen that instead of an accurate solution one gets no solution at all. In
addition, the other evaluation criteria indicate either the better or an equal prediction

18



with LMBNNR to TensorFlow (see Appendix Table 22).
In Concrete compressive strength data the results obtained with LMBNNR are

worse than the best results obtained by TensorFlow3 (see Table 4), and it seems that
the ASP would have caused a premature termination. We will analyse this termination
later on. Nevertheless, it is worth of noting that LMBNNR (with and without termina-
tion) produces clearly more accurate predictions than TensorFlow1 and TensorFlow2.

Since our hypothesis is that the proposed LMBNNR algorithm performs the best
in the large-scale data sets, the result in SGEMM GPU kernel performance is a dis-
appointment (see Table 7). The smallest RMSE for the test set obtained with the
proposed algorithm is considerably more than that of TensorFlow3. Moreover, the
ASP would have caused premature termination leading to the prediction that is less
accurate than that of TensorFlow1 (with more than 10 nodes). Without the ASP the
predictions obtained with LMBNNR (with more than 10 nodes) are more accurate
than those of TensorFlow1 and TensorFlow2. Nevertheless, with respect to the MAE
the LMBNNR algorithm is ranked next to TensorFlow3 even with the stopping pro-
cedure (see Appendix Table 19).

The results of our experiments show that overall the ASP works fairly well. In
MiniBooNE PID, Online news popularity4 and BlogFeedback data sets the ASP trig-
gers within a few iterations after the best solution is obtained. In addition, in Combined
cycle power plant, Airfoil self-noise, Physicochemical properties of protein, Boston
housing, and Residential building data sets the predictions obtained applying the ASP
are very close to the best predictions obtained. However, there is a premature termina-
tion with Concrete compressive strength and SGEMM GPU kernel performance data
sets (see Tables 4 and 7). The closer look to predictions produced by the LMBNNR
algorithm in the former data shows that, indeed, there is a small increase in the RMSE
values of the test set from H = 10 to H = 22, which may explain the premature ter-
mination. In the latter data adding nodes between H = 5 and H = 21 does not affect
the prediction at all.

On the other hand, there are delayed terminations in ISOLET and Greenhouse
gas observing network data. The late termination is probably caused by the small
maximum number of iterations used in the optimization procedure LMBM, which
means that it is easy to diminish the objective function value also in the subsequent
iterations of the LMBNNR algorithm. However, increasing this number would easily
lead to overfitting. Therefore, we can conclude that the ASP works best with the
small, medium-sized and relatively large number of features, and we recommend to
use the smaller maximum number of nodes than used here with a very large number of
features. In both ISOLET and Greenhouse gas observing network data the predictions
obtained with LMBNNR are good already with ten nodes.

TensorFlow3 is the most accurate version of TensorFlow when the number of input
features is relatively low (see Tables 2–7). However, it usually requires more computa-
tional time than the proposed LMBNNR. Moreover, TensorFlow3 fails almost always

4To be precise, in Online news popularity data the computation stopped due to maximum number of
nodes. The ASP would have triggered with 101 nodes.

19



when the number of input features is large (see Tables 8–13). Therefore, we can con-
clude that LMBNNR clearly outperforms this version of TensorFlow.

With TensorFlow2 we almost always get some results out in a short time, however
the predictions are not accurate. Obviously, these parameter choices are not suitable
for TensorFlow and the main reason to keep this version here is the pure theoretical.
Thus, we can easily claim that LMBNNR outperforms this version of TensorFlow.

TensorFlow1 uses the default parameters. It is in general very efficient method us-
ing only few seconds to solve an individual RELU-NNR problem. However, it is able
to produce “good enough” predictions in only four data sets out of 12. Out of these
four, TensorFlow1 produces (at least with some numbers of nodes) more accurate pre-
diction results than those obtained by the LMBNNR only in two data sets. Therefore,
again we can conclude that the proposed algorithm outperforms this version of Ten-
sorFlow.

Finally, the results demonstrate that all the tested versions of TensorFlow either fail
or give very inaccurate predictions in data sets with large number of samples and/or
features like in MiniBooNE PID, BlogFeedback, and Greenhouse gas observation net-
work data while LMBNNR works fine.

It is also worth of noting that finding good hyperparameters for TensorFlow is time
consuming and may require a separate validation set to be used. For instant, if we just
run TensorFlow with two different numbers of nodes, the CPU time is doubled — not
to mention the time needed to prepare the separate runs and validate the results. On
the other hand, with LMBNNR all results are obtained within the computational time
of the largest number of nodes without the need of separate runs. In addition, there is
no need to use a separate validation set to select good hyperparameters in LMBNNR.

6 Conclusions

In this paper, a new neural networks algorithm is proposed to solve regression prob-
lems in large data sets. The regression problem is modeled using the neural network
with one hidden layer, the piecewise linear activation function known as RELU, and
the L1-based loss function. Since the loss function is nonsmooth and nonconvex we
apply the limited memory bundle method to minimize it. We utilize this method as it
is capable of handling large dimensions, nonconvexity, and nonsmoothness very effi-
ciently.

The proposed neural networks algorithm for regression requires no hyperparameter
tuning. It starts with one hidden node and gradually adds more nodes at each iteration.
The algorithm terminates when the loss function value cannot be improved in several
successive iterations or the maximum number of hidden nodes is reached.

The new algorithm is tested using 12 large real-world data sets and compared with
the backpropagation algorithm using TensorFlow. In particular, we tested different
hyperparameter settings in TensorFlow and used its best results in comparison. The
results show that the proposed algorithm clearly outperforms TensorFlow. It provides a

20



better prediction in eight out of 12 data sets and an approximately similar prediction in
two out of 12 data sets. Only in two data sets the prediction produced by the proposed
algorithm is worse than the best prediction produced by TensorFlow. Although some
versions of TensorFlow are notably fast in comparison with the new algorithm, their
prediction results are significantly worse. Therefore we can conclude that the proposed
algorithm is accurate and efficient for solving regression problems both with large
number of samples and large number of input features.

Results presented in this paper show that the use of simple but nonsmooth acti-
vation functions in neural networks together with powerful nonsmooth optimization
methods can lead to the development of accurate and efficient hyperparameter-free
neural network algorithms. The approach proposed in this paper can be extended to
model neural networks for classification (supervised learning problems) and to build
neural networks with more than one hidden layer in order to develop robust and effec-
tive deep learning algorithms. These will be subjects of future research.

Acknowledgments
This work was financially supported by Academy of Finland grants #289500 and
#319274, and by the Australian Government through the Australian Research Coun-
cil’s Discovery Projects funding scheme (Project No. DP190100580).

References
[1] AGGARWAL, C. Neural Networks and Deep Learning. Springer-Verlag, Berlin,

2018.

[2] AIROLA, A., AND PAHIKKALA, T. Fast kronecker product kernel methods via
generalized vec trick. IEEE Transactions on Neural Networks and Learning
Systems 29, 8 (2018), 3374–3387.

[3] BAGIROV, A. M., KARMITSA, N., AND MÄKELÄ, M. M. Introduction to Non-
smooth Optimization: Theory, Practice and Software. Springer, 2014.

[4] BAGIROV, A. M., KARMITSA, N., AND TAHERI, S. Partitional Clustering via
Nonsmooth Optimization: Clustering via Optimization. Springer, 2020.

[5] BALLESTER-RIPOLL, R., PAREDES, E., AND PAJAROLA, R. Sobol tensor
trains for global sensitivity analysis. In arXiv Computer Science / Numerical
Analysis e-prints., 2017. Data set available in UCI machine learning repository
<URL: http://archive.ics.uci.edu/ml> (September 21st, 2020).

[6] BIHAIN, A. Optimization of upper semidifferentiable functions. Journal of
Optimization Theory and Applications 4, 4 (1984), 545–568.

21

http://archive.ics.uci.edu/ml


[7] BROOMHEAD, D., AND LOWE, D. Radial Basis Functions, Multi-Variable
Functional Interpolation and Adaptive Networks. Malvern, Worcs.: Royals Sig-
nals and Radar Establishment, 1988.

[8] BUZA, K. Feedback prediction for blogs. In Data Analysis, Machine Learn-
ing and Knowledge Discovery (pp. 145-152). Springer International Publish-
ing., 2014. Data set available in UCI machine learning repository <URL:
http://archive.ics.uci.edu/ml> (June 11th, 2016).

[9] BYRD, R. H., NOCEDAL, J., AND SCHNABEL, R. B. Representations of quasi-
Newton matrices and their use in limited memory methods. Mathematical Pro-
gramming 63 (1994), 129–156.

[10] CLARKE, F. H. Optimization and Nonsmooth Analysis. Wiley-Interscience, New
York, 1983.

[11] DAVIES, D., DRUSVYATSKIY, D., KAKADE, S., AND LEE, J. Stochastic sub-
gradient method converges on tame functions. Foundations of Computational
Mathematics 20 (2020), 119–154.

[12] DUA, D., AND KARRA TANISKIDOU, E. UCI machine learning repository.
Available online at <URL: http://archive.ics.uci.edu/ml>, Uni-
versity of California, Irvine, School of Information and Computer Sciences,
2017. (November 25th, 2020).

[13] EVANS, L. C., AND GARIEPY, R. F. Measure theory and fine properties of
functions. CRC Press, Boca Raton, FL, 1992.

[14] FARIS, H., MIRJALILI, S., AND ALJARAH, I. Automatic selection of hidden
neurons and weights in neural networks using grey wolf optimizer based on a
hybrid encoding scheme. International Journal of Machine Learning and Cy-
bernetics 10 (2019), 2901–2920.

[15] FERNANDES, K., VINAGRE, P., AND CORTEZ, P. A proactive intelligent de-
cision support system for predicting the popularity of online news. Proceed-
ings of the 17th EPIA 2015 — Portuguese Conference on Artificial Intelligence,
September, Coimbra, Portugal., 2015. Data set available in UCI machine learn-
ing repository <URL: http://archive.ics.uci.edu/ml> (June 11th,
2016).

[16] GENG, Z., AND WANG, Y. Automated design of a convolutional neural net-
work with multi-scale filters for cost-efficient seismic data classification. Nature
Communications 11, 3311 (2020).

[17] HAARALA, M., MIETTINEN, K., AND MÄKELÄ, M. M. New limited memory
bundle method for large-scale nonsmooth optimization. Optimization Methods
and Software 19, 6 (2004), 673–692.

22

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


[18] HAARALA, N., MIETTINEN, K., AND MÄKELÄ, M. M. Globally convergent
limited memory bundle method for large-scale nonsmooth optimization. Mathe-
matical Programming 109, 1 (2007), 181–205.

[19] HARRISON, D., AND RUBINFELD, D. Hedonic prices and the demand for
clean air. Journal of Environmental Economics and Management 5 (1978), 81–
102. Data set available in Kaggle <URL: https://www.kaggle.com/c/
boston-housing/> (Sepember 21st, 2020).

[20] HAYKIN, S. Neural Networks: A Comprehensive Foundation. Prentice Hall,
2007.

[21] HINTON, G. A practical guide to training restricted Boltzmann machines. In
Neural Networks: Tricks of the Trade: Second Edition, G. Montavon, G. B. Orr,
and K.-R. Müller, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012,
pp. 599–619.

[22] HUANG, D.-S., AND DU, J.-X. A constructive hybrid structure optimization
methodology for radial basis probabilistic neural networks. IEEE Transactions
on Neural Networks 19, 12 (2008), 2099–2115.

[23] HUANG, G.-B. Learning capability and storage capacity of two-hidden-layer
feedforward networks. IEEE Transactions on Neural Networks 14, 2 (2003),
274–281.

[24] IBNU, C. R. M., SANTOSO, J., AND SURENDRO, K. Determining the neural
network topology: A review. In Proceedings of the 2019 8th International Con-
ference on Software and Computer Applications (New York, NY, USA, 2019),
ICSCA ’19, Association for Computing Machinery, pp. 357–362.

[25] IMAIZUMI, M., AND FUKUMIZU, K. Deep neural networks learn non-smooth
functions effectively. In Proceedings of Machine Learning Research (2019),
K. Chaudhuri and M. Sugiyama, Eds., vol. 89, PMLR, pp. 869–878.

[26] KÄRKKÄINEN, T., AND HEIKKOLA, E. Robust formulations for training mul-
tilayer perceptrons. Neural Computation 16, 4 (2004), 837–862.

[27] KARMITSA, N. Limited memory bundle method and its variations for large-
scale nonsmooth optimization. In Numerical Nonsmooth Optimization: State of
the Art Algorithms, A. M. Bagirov, M. Gaudioso, N. Karmitsa, M. M. Mäkelä,
and S. Taheri, Eds. Springer, 2020, pp. 167–200.

[28] KARMITSA, N., BAGIROV, A., TAHERI, S., AND JOKI, K. Limited memory
bundle method for clusterwise linear regression. In Computational Sciences and
Artificial Intelligence in Industry, T. Tuovinen, J. Periaux, and P. Neittaanmäki,
Eds. Springer, in-press, 2020.

23

https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/


[29] KARMITSA, N., BAGIROV, A. M., AND TAHERI, S. Clustering in large data
sets with the limited memory bundle method. Pattern Recognition 83 (2018),
245–259.

[30] KARMITSA, N., TAHERI, S., BAGIROV, A. M., AND MÄKINEN, P. Missing
value imputation via clusterwise linear regression. IEEE Transactions on Knowl-
edge and Data Engineering (2020), in–press.

[31] KAYA, H., TÜFEKCI, P., AND GÜRGEN, S. F. Local and global learning meth-
ods for predicting power of a combined gas & steam turbine. In Proceedings of
the International Conference on Emerging Trends in Computer and Electronics
Engineering ICETCEE 2012, pp. 13–18, March, Dubai., 2012. Data set available
in UCI machine learning repository <URL: http://archive.ics.uci.
edu/ml> (June 11th, 2016).

[32] KIWIEL, K. C. Methods of Descent for Nondifferentiable Optimization. Lecture
Notes in Mathematics 1133. Springer-Verlag, Berlin, 1985.

[33] LAROCHELLE, H., ERHAN, D., COURVILLE, A., BERGSTRA, J., AND BEN-
GIO, Y. An empirical evaluation of deep architectures on problems with many
factors of variation. In Proceedings of ICML (2007), vol. 227, pp. 473–480.

[34] LECUN, Y., BOTTOU, L., ORR, G., AND MULLER, K.-R. Efficient backprop.
In Neural Networks: Tricks of the Trade: Second Edition, G. Montavon, G. B.
Orr, and K.-R. Müller, Eds. Springer Berlin Heidelberg, 2012, pp. 9–48.

[35] LEUNG, F.-F., LAM, H.-K., LING, S.-H., AND TAM, P.-S. Tuning of the struc-
ture and parameters of a neural network using an improved genetic algorithm.
IEEE Transactions on Neural Networks 11, 1 (2003), 79–88.

[36] LUCAS, D., YVER KWOK, C., CAMERON-SMITH, P., GRAVEN, H.,
BERGMANN, D., GUILDERSON, T., WEISS, R., AND KEELING, R. Design-
ing optimal greenhouse gas observing networks that consider performance and
cost. Geoscientific Instrumentation Methods and Data Systems 4 (2015), 121–
137. Data set available in UCI machine learning repository <URL: http:
//archive.ics.uci.edu/ml> (Sepember 21st, 2020).

[37] MALTE, J. Artificial neural network regression models in a panel setting: Pre-
dicting economic growth. Economic Modelling 91 (2020), 148–154.

[38] MAREN, A., HARSTON, C., AND PAP, R. Handbook of Neural Computing
Applications. Academic Press, 2014.

[39] NUGTEREN, C., AND CODREANU, V. Cltune: A generic auto-tuner for
opencl kernels. In MCSoC: 9th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip. IEEE., 2015. Data set available in UCI

24

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


machine learning repository <URL: http://archive.ics.uci.edu/
ml> (September 21st, 2020).

[40] ODIKWA, H., IFEANYI-REUBEN, N., AND THOM-MANUEL, O. M. An im-
proved approach for hidden nodes selection in artificial neural network. Interna-
tional Journal of Applied Information Systems (IJAIS) 12, 17 (2020), 7–14.

[41] RAFIEI, M., AND ADELI, H. A novel machine learning model for estimation
of sale prices of real estate units. ASCE, Journal of Construction Engineer-
ing & Management 142, 2 (2015). Data set available in UCI machine learn-
ing repository <URL: http://archive.ics.uci.edu/ml> (September
21st, 2020).

[42] REED, R., AND MARKS, R. J. Neural Smithing: Supervised Learning in Feed-
forward Artificial Neural Networks. The MIT Press, 1998.

[43] RUMELHART, D., HINTON, G., AND WILLIAMS, R. Learning representations
by back-propagating errors. Nature 323 (1988), 533–536.

[44] SELMIC, R. R., AND LEWIS, F. L. Neural-network approximation of piecewise
continuous functions: Application to friction compensation. IEEE Transactions
on Neural Networks 13, 3 (2002), 745–751.

[45] TSAI, J.-T., CHOU, J.-H., AND LIU, T.-K. Tuning the structure and parameters
of a neural network by using hybrid taguchi-genetic algorithm. IEEE Transac-
tions on Neural Networks 17, 1 (2006), 69–80.

[46] TÜFEKCI, P. Prediction of full load electrical power output of a base load
operated combined cycle power plant using machine learning methods. In-
ternational Journal of Electrical Power & Energy Systems 60 (2014), 126–
140. Data set available in UCI machine learning repository <URL: http:
//archive.ics.uci.edu/ml> (June 11th, 2016).

[47] WILAMOWSKI, B. M. Neural network architectures. In The Industrial Electron-
ics Handbook. CRC Press, 2011.

[48] YEH, I. Modeling of strength of high performance concrete using artificial neural
networks. Cement and Concrete Research 28, 12 (1998), 1797–1808. Data
set available in UCI machine learning repository <URL: http://archive.
ics.uci.edu/ml> (June 11th, 2016).

25

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Appendix
Performance measures. We now describe the performance measures used in our
evaluations and comparisons. Let e1, . . . , en for n ≥ 1 be actual observed values
for some parameter e and ē1, . . . , ēn be their forecast values. We use the following
performance measures:

• root mean square error:

RMSE =
( 1

n

n∑
i=1

(ēi − ei)2
)1/2

;

• mean absolute error:

MAE =
1

n

n∑
i=1

|ēi − ei|;

• coefficient of determination:

R2 = 1−
(∑n

i=1(ei − ēi)2∑n
i=1(ei − e0)2

)
;

• Pearson’s correlation coefficient:

r =

∑n
i=1(ei − e0)(ēi − ē0)(∑n

i=1(ei − e0)2
∑m

i=1(ēi − ē0)2
)1/2

.

In the R2 and r measures, e0 is the mean of observed values. The small values of
RMSE and MAE measures indicate small deviations of the predictions from actual
observations. The R2 measure ranges from −∞ to 1: R2 = 1 means a perfect predic-
tion, R2 = 0 indicates that the model predictions are as accurate as the mean of the
observed data and an efficiency −∞ < R2 < 0 occurs when the observed mean is a
better predictor than the model. In the measure r, ē0 is the mean of forecast values.
The range of r is from −1 to 1: r = 1 implies that a linear equation describes the
relationship between observed and forecast values perfectly, r = −1 means that all
the samples lie on a line for which a forecast value decreases as an observed value
increases and r = 0 happens when there is no linear correlation between these values.

26



Table 14: MAE, R2 and r for test set in Combined cycle power plant data.
MAE

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 3.487 6.703 15.910 3.634
5 3.342 4.807 16.650 3.470
10 3.176 4.563 14.706 3.332
50 3.076 3.727 16.093 3.226
100 3.068 3.638 14.870 3.182
200 3.059 3.605 15.118 3.221
500 – 3.582 14.315 3.198
5000 – 3.571 14.529 3.249
Best: H=198 3.059
Term: H=54 3.076

R2

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.934 0.750 –0.256 0.930
5 0.939 0.874 –0.618 0.935
10 0.941 0.887 –0.094 0.939
50 0.943 0.926 –0.213 0.941
100 0.943 0.929 0.004 0.942
200 0.943 0.930 –0.046 0.941
500 – 0.931 0.085 0.942
5000 – 0.931 0.066 0.941
Best: H=198 0.943
Term: H=54 0.943

r

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.967 0.867 0.108 0.967
5 0.969 0.935 0.169 0.969
10 0.970 0.942 0.087 0.970
50 0.971 0.962 –0.204 0.972
100 0.971 0.964 0.110 0.972
200 0.971 0.965 –0.042 0.972
500 – 0.965 0.491 0.972
5000 – 0.965 0.738 0.972
Best: H=198 0.971
Term: H=54 0.971

27



Table 15: MAE, R2 and r for test set in Airfoil self-noise data.
MAE

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 3.519 5.469 7.868 3.308
5 3.010 5.317 7.552 2.819
10 3.011 4.755 7.082 2.187
50 2.921 4.490 5.712 1.833
100 1.306 4.440 5.567 1.549
200 1.295 4.318 5.630 1.580
500 – 4.297 5.454 1.683
5000 – 4.294 5.417 1.532
Best: H=196 1.295
Term: H=107 1.306

R2

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.467 –0.013 –1.414 0.570
5 0.570 0.034 –1.026 0.696
10 0.569 0.228 –0.851 0.822
50 0.582 0.303 –0.125 0.871
100 0.927 0.325 –0.040 0.909
200 0.928 0.366 –0.080 0.907
500 – 0.373 –0.008 0.890
5000 – 0.378 0.009 0.908
Best: H=196 0.928
Term: H=107 0.927

r

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.699 0.033 0.063 0.769
5 0.768 0.245 0.041 0.849
10 0.768 0.478 –0.035 0.911
50 0.784 0.593 0.096 0.940
100 0.963 0.663 0.108 0.956
200 0.964 0.711 –0.012 0.957
500 – 0.723 0.054 0.949
5000 – 0.726 0.164 0.956
Best: H=196 0.964
Term: H=107 0.963

28



Table 16: MAE, R2 and r for test set in Concrete compressive strength data.
MAE

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 8.611 14.271 22.520 6.099
5 8.349 12.909 18.357 4.991
10 5.167 12.493 18.999 4.286
50 4.851 11.401 14.427 3.811
100 4.505 11.090 14.663 3.866
200 4.505 10.364 14.168 3.680
500 – 10.315 13.593 3.622
5000 – 10.332 13.536 3.425
Best: H=72 4.511
Term: H=17 5.167

R2

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.534 –0.118 –2.544 0.787
5 0.577 0.102 –1.011 0.854
10 0.841 0.170 –1.101 0.888
50 0.852 0.323 –0.153 0.912
100 0.867 0.367 –0.181 0.908
200 0.867 0.442 –0.089 0.915
500 – 0.451 0.021 0.918
5000 – 0.452 0.025 0.928
Best: H=72 0.868
Term: H=17 0.841

r

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.767 0.116 –0.017 0.889
5 0.784 0.351 –0.048 0.930
10 0.917 0.441 0.021 0.946
50 0.924 0.594 0.141 0.959
100 0.931 0.655 –0.008 0.959
200 0.931 0.722 0.012 0.962
500 – 0.743 0.181 0.963
5000 – 0.751 0.237 0.967
Best: H=72 0.932
Term: H=17 0.917

29



Table 17: MAE, R2 and r for test set in Physicochemical properties of protein data.
MAE

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 3.941 4.399 6.651 4.265(1)

5 3.756 4.263 6.723 NaN
10 3.743 4.233 6.587 3.800(2)

50 3.493 4.118 5.732 NaN
100 3.493 4.073 5.710 NaN
200 3.484 4.084 5.424 NaN
500 – 4.122 5.471 NaN
5000 – 4.092 5.423 NaN
Best: H=181 3.484
Term: H=62 3.493

R2

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.238 0.260 –0.777 0.287(1)

5 0.297 0.289 –0.979 NaN
10 0.305 0.300 –0.844 0.361(2)

50 0.377 0.329 –0.263 NaN
100 0.377 0.335 –0.137 NaN
200 0.378 0.338 –0.027 NaN
500 – 0.330 –0.019 NaN
5000 – 0.338 0.010 NaN
Best: H=181 0.378
Term: H=62 0.377

r

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.539 0.511 –0.045 0.551(1)

5 0.583 0.539 –0.008 NaN
10 0.587 0.550 –0.001 0.611(2)

50 0.634 0.577 –0.027 NaN
100 0.634 0.581 –0.010 NaN
200 0.636 0.583 0.055 NaN
500 – 0.579 0.031 NaN
5000 – 0.585 0.168 NaN
Best: H=181 0.636
Term: H=62 0.634

(1) 2/10 runs led to NaN loss function value.
(2) 8/10 runs led to NaN loss function value.

30



Table 18: MAE, R2 and r for test set in Boston housing data.
MAE

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 3.291 7.388 9.626 3.265
5 2.582 6.662 9.265 2.750
10 2.372 6.229 9.371 2.693
50 2.624 5.519 7.685 2.622
100 2.624 5.163 7.412 2.619
200 2.624 4.904 6.955 2.528
500 – 4.966 7.086 2.532
5000 – 4.917 6.681 2.494
Best: H=8 2.297
Term: H=22 2.371

R2

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.704 –0.195 –0.783 0.785
5 0.815 0.141 –0.513 0.841
10 0.877 0.239 –0.608 0.849
50 0.854 0.366 –0.145 0.861
100 0.854 0.425 –0.120 0.861
200 0.854 0.455 –0.085 0.874
500 – 0.425 –0.051 0.870
5000 – 0.437 0.040 0.869
Best: H=8 0.885
Term: H=22 0.875

r

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.853 0.127 0.067 0.901
5 0.904 0.470 0.298 0.922
10 0.936 0.477 0.042 0.923
50 0.924 0.640 0.099 0.931
100 0.924 0.685 0.169 0.931
200 0.924 0.720 0.138 0.937
500 – 0.698 0.132 0.936
5000 – 0.712 0.542 0.934
Best: H=8 0.941
Term: H=22 0.936

31



Table 19: MAE, R2 and r for test set in SGEMM GPU kernel performance data.
MAE

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 84.180 106.274 332.182 97.193
5 53.063 75.854 403.268 63.499
10 53.063 63.318 360.189 45.560
50 31.944 61.959 286.637 28.370
100 30.713 61.185 267.953 28.346
200 – 59.193 246.155 24.309
500 – 57.267 221.834 23.878
5000 – 56.482 211.507 19.731
Best: H=100 30.713
Term: H=8 53.063

R2

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.634 0.768 –1.038 0.838
5 0.901 0.878 –1.273 0.916
10 0.901 0.900 –0.892 0.954
50 0.956 0.913 –0.366 0.986
100 0.959 0.917 –0.195 0.987
200 – 0.920 –0.092 0.990
500 – 0.924 –0.079 0.991
5000 – 0.924 0.011 0.994
Best: H=100 0.959
Term: H=8 0.901

r

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.825 0.870 0.004 0.924
5 0.951 0.938 –0.016 0.960
10 0.951 0.949 0.005 0.981
50 0.978 0.956 0.007 0.993
100 0.979 0.958 0.007 0.994
200 – 0.960 0.093 0.996
500 – 0.962 –0.091 0.996
5000 – 0.962 0.125 0.997
Best: H=100 0.979
Term: H=8 0.951

32



Table 20: MAE, R2 and r for test set in MiniBooNE PID data.
MAE

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 1.888 229.634 63.036 NaN
5 1.073 33606.759(1) 48.827 NaN
10 0.816 6994.444(2) 64.216 NaN
50 0.583 305887.491(3) 47.492 NaN
100 0.580 556756.811(3) 64.154 NaN
200 – NaN 43.483 NaN
500 – 25361.646(3) 31.088 NaN
5000 – NaN 26.627 NaN
Best: H=95 0.580
Term: H=99 0.580

R2

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.851 –702995.620 –32493.587 NaN
5 0.938 –60903087504.947(1) –12182.922 NaN
10 0.954 –2103154092.975(2) –19041.354 NaN
50 0.975 –669919601352.566 (3) –11304.678 NaN
100 0.975 –2219400412915.230(3) –28118.869 NaN
200 – NaN –10831.922 NaN
500 – –4603157782.712(3) –5287.546 NaN
5000 – NaN –2588.915 NaN
Best: H=95 0.975
Term: H=99 0.975

r

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.995 0.000 0.003 NaN
5 0.996 0.000(1) –0.058 NaN
10 0.996 0.000(2) 0.005 NaN
50 0.997 0.000(3) 0.026 NaN
100 0.997 0.000(3) 0.016 NaN
200 – NaN 0.032 NaN
500 – 0.000(3) 0.048 NaN
5000 – NaN 0.044 NaN
Best: H=95 0.997
Term: H=99 0.997

(1) 2/10 runs led to NaN loss function value.
(2) 3/10 runs led to NaN loss function value.
(3) 9/10 runs led to NaN loss function value.

33



Table 21: MAE, R2 and r for test set in Online news popularity data.
MAE

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 2460.430 3333.375 7630.585 3800.756(1)

5 2453.002 3249.126 10810.528 NaN
10 2446.060 3464.855 10630.898 NaN
50 2476.646 3642.130 9047.129 NaN
100 2502.860 3632.464 7357.324 NaN
200 – 4408.260 6285.794 NaN
500 – 3609.625 4917.437 NaN
5000 – 3484.741 3420.317 NaN
Best: H=99 2502.809
Term: H=100 2502.860

R2

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 –0.016 –0.002 –0.690 –0.031(1)

5 –0.014 –0.002 –1.331 NaN
10 –0.012 –0.010 –1.209 NaN
50 –0.009 –0.065 –0.806 NaN
100 –0.009 –0.073 –0.440 NaN
200 – –0.112 –0.298 NaN
500 – –0.038 –0.134 NaN
5000 – –0.005 –0.012 NaN
Best: H=99 –0.009
Term: H=100 –0.009

r

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.109 0.042 0.003 0.092(1)

5 0.120 0.066 0.004 NaN
10 0.124 0.074 –0.014 NaN
50 0.117 0.068 0.005 NaN
100 0.111 0.066 –0.001 NaN
200 – 0.063 –0.004 NaN
500 – 0.081 –0.006 NaN
5000 – 0.114 0.011 NaN
Best: H=99 0.111
Term: H=100 0.111

(1) 7/10 runs led to NaN loss function value.

34



Table 22: MAE, R2 and r for test set in Residential building data.
MAE

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 121.323 787.701 1161.594 149.070(1)

5 122.460 745.838 998.809 126.355(2)

10 87.085 746.882 1179.940 105.905(3)

50 94.572 695.736 850.053 94.044(3)

100 94.572 656.278 782.288 NaN
200 94.572 627.105 708.014 NaN
500 – 607.388 655.423 NaN
5000 – 492.349 568.573 NaN
Best: H=10 87.085
Term: H=20 93.870

R2

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.966 0.169 –0.714 0.964(1)

5 0.966 0.330 –0.107 0.977(2)

10 0.986 0.330 –0.427 0.985(3)

50 0.985 0.375 0.112 0.987(3)

100 0.985 0.392 0.241 NaN
200 0.985 0.440 0.376 NaN
500 – 0.368 0.404 NaN
5000 – 0.636 0.499 NaN
Best: H=10 0.986
Term: H=20 0.986

r

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.985 0.456 0.320 0.985(1)

5 0.985 0.593 0.280 0.990(2)

10 0.994 0.597 0.160 0.993(3)

50 0.994 0.615 0.466 0.994(3)

100 0.994 0.690 0.547 NaN
200 0.994 0.704 0.632 NaN
500 – 0.673 0.641 NaN
5000 – 0.852 0.708 NaN
Best: H=10 0.994
Term: H=20 0.994

(1) 2/10 runs led to NaN loss function value.
(2) 1/10 runs led to NaN loss function value.
(3) 4/10 runs led to NaN loss function value.

35



Table 23: MAE, R2 and r for test set in BlogFeedback data.
MAE

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 5.757 NaN NaN NaN
5 5.556 NaN NaN NaN
10 5.420 NaN NaN NaN
50 5.203 NaN NaN NaN
100 5.197 NaN NaN NaN
200 – NaN NaN NaN
500 – NaN NaN NaN
5000 – NaN NaN NaN
Best: H=100 5.197
Term: H=95 5.197

R2

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.370 NaN NaN NaN
5 0.418 NaN NaN NaN
10 0.451 NaN NaN NaN
50 0.520 NaN NaN NaN
100 0.525 NaN NaN NaN
200 – NaN NaN NaN
500 – NaN NaN NaN
5000 – NaN NaN NaN
Best: H=100 0.525
Term: H=95 0.525

r

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.635 NaN NaN NaN
5 0.672 NaN NaN NaN
10 0.693 NaN NaN NaN
50 0.730 NaN NaN NaN
100 0.733 NaN NaN NaN
200 – NaN NaN NaN
500 – NaN NaN NaN
5000 – NaN NaN NaN
Best: H=100 0.733
Term: H=95 0.733

36



Table 24: MAE, R2 and r for test set in ISOLET data.
MAE

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 3.669 4.270 7.494 NaN
5 2.935 3.831 8.759 NaN
10 2.988 3.665 7.982 NaN
50 3.184 3.642 7.888 NaN
100 3.175 3.607 7.815 NaN
200 – 3.605 7.301 NaN
500 – 3.784 7.502 NaN
5000 – NaN 6.648 NaN
Best: H=6 2.925
Term: H=84 3.175

R2

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.550 0.463 –0.682 NaN
5 0.689 0.547 –1.444 NaN
10 0.682 0.574 –0.850 NaN
50 0.647 0.587 –0.791 NaN
100 0.649 0.591 –0.754 NaN
200 – 0.592 –0.539 NaN
500 – 0.558 –0.666 NaN
5000 – NaN –0.315 NaN
Best: H=6 0.690
Term: H=84 0.649

r

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.755 0.676 0.050 NaN
5 0.838 0.743 0.118 NaN
10 0.838 0.763 0.086 NaN
50 0.826 0.774 0.147 NaN
100 0.827 0.779 0.142 NaN
200 – 0.782 0.210 NaN
500 – 0.800 0.242 NaN
5000 – NaN 0.392 NaN
Best: H=6 0.840
Term: H=84 0.827

37



Table 25: MAE, R2 and r for test set in Greenhouse gas observing network data.
MAE

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 17.584 32.923(1) 238.605 NaN
5 17.802 NaN 204.267 NaN
10 17.397 NaN 313.008 NaN
50 17.890 NaN 294.423 NaN
100 17.890 NaN 278.436 NaN
200 – NaN 300.219 NaN
500 – NaN 325.884 NaN
5000 – NaN 664.811 NaN
Best: H=8 17.584
Term: H=36 17.890

R2

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.950 0.509(1) –20.987 NaN
5 0.949 NaN –11.939 NaN
10 0.952 NaN –27.330 NaN
50 0.948 NaN –24.579 NaN
100 0.948 NaN –19.414 NaN
200 – NaN –25.177 NaN
500 – NaN –33.636 NaN
5000 – NaN –147.049 NaN
Best: H=8 0.951
Term: H=36 0.948

r

H LMBNNR TensorFlow1 TensorFlow2 TensorFlow3

2 0.975 0.700(1) 0.557 NaN
5 0.975 NaN 0.667 NaN
10 0.976 NaN 0.740 NaN
50 0.974 NaN 0.832 NaN
100 0.974 NaN 0.832 NaN
200 – NaN 0.753 NaN
500 – NaN 0.795 NaN
5000 – NaN 0.838 NaN
Best: H=8 0.975
Term: H=36 0.974

(1) 4/10 runs led to NaN loss function value.

38





Joukahaisenkatu 3-5 A, 20520 TURKU, Finland | www.tucs.fi

University of Turku
Faculty of Mathematics and Natural Sciences
• Department of Information Technology
• Department of Mathematics and Statistics
Turku School of Economics
• Institute of Information Systems Sciences

Åbo Akademi University
• Computer Science
• Computer Engineering

ISBN 978-952-12-4005-8
ISSN 1239-1891


	Introduction
	Theoretical background and notations
	Nonsmooth optimization
	Neural networks
	Neural networks for regression

	Nonsmooth optimization model of ReLU-NNR 
	The proposed LMBNNR algorithm
	Numerical experiments
	Conclusions

