
Globally Convergent Cutting Plane Method for

Nonconvex Nonsmooth Minimization

Napsu Karmitsa1 Mario Tanaka Filho2 and José Herskovits3

Abstract: Nowadays, solving nonsmooth (not necessarily differentiable) optimization
problems plays a very important role in many areas of industrial applications. Most of
the algorithms developed so far deal only with nonsmooth convex functions. In this
paper, we propose a new algorithm for solving nonsmooth optimization problems that
are not assumed to be convex. The algorithm combines the traditional cutting plane
method with some features of bundle methods, and the search direction calculation of
feasible direction interior point algorithm [Herskovits 1998]. The algorithm to be pre-
sented generates a sequence of interior points to the epigraph of the objective function.
The accumulation points of this sequence are solutions to the original problem. We
prove the global convergence of the method for locally Lipschitz continuous functions
and give some preliminary results from numerical experiments.

Keywords: Nondifferentiable programming, cutting planes, bundle methods, feasible

direction interior point methods, nonconvex problems.

1 Introduction

We describe a new algorithm for solving unconstrained optimization problems of
the form

{

minimize f(x)

such that x ∈ R
n,

(P)

where the objective function f : R
n → R is supposed to be locally Lipschitz

continuous. Note that no convexity or differentiability assumptions are made. We
propose an approach to solve (P) that combines the traditional cutting plane
technique [1, 7] with FDIPA, the feasible direction interior point algorithm [4].
In addition, some ideas similar to bundle methods (see e.g. [8, 10, 13]) are used.
Namely, we utilize serious and null steps and collect cutting planes into a bundle.

In this work we have extended to the nonconvex case the algorithm presented in
[5, 12]. In practice, we replace the original unconstrained nonsmooth problem (P)
with an equivalent problem (EP) with one nonsmooth constraint. That is,

{

minimize F (x, z) = z

such that f(x) ≤ z, (x, z) ∈ R
n+1.

(EP)

1. Department of Mathematics, University of Turku, FI-20014 Turku, Finland. E-mail:
napsu@karmitsa.fi
2. COPPE — Federal University of Rio de Janeiro, Mechanical Engineering Program, Caixa
Postal 68503, 21945 970 Rio de Janeiro, Brazil. E-mail: tanaka@ufpa.br
3. COPPE — Federal University of Rio de Janeiro, Mechanical Engineering Program, Caixa
Postal 68503, 21945 970 Rio de Janeiro, Brazil. E-mail: jose@optimize.ufrj.br

1

We then build a sequence of auxiliary linear problems where the constraint of
(EP) is approximated by cutting planes to the epigraph of the objective function.
In each iteration a search direction for the auxiliary problem is computed using
FDIPA. The algorithm to be presented generates a sequence of interior points
to the epigraph of the objective function.

FDIPA has been developed for solving smooth (continuously differentiable)
nonlinear constrained optimization problems. At each iteration, a direction of
descent is obtained by solving two systems of linear equations using the same
internal matrix. FDIPA does not use any penalty or barrier functions, it does
not need to solve quadratic subproblems, it is robust, efficient and easy to imple-
ment [4].

Traditionally, cutting plane techniques [1, 7] and their successor bundle meth-
ods (see e.g. [6, 8]) work only for convex functions. In the convex case, cutting
planes form the lower approximation for the objective function. This is no longer
true in the nonconvex case. Therefore, the generalization of the methods to the
nonconvex case is not an easy task and most of the methods developed so far still
deal only with convex functions.

Nevertheless, it is apparent that a number of ideas valid in the convex case are
valuable also in the treatment of nonconvex functions. For example, in [3], the
nonconvexity is conquered by constructing both a lower and an upper polyhedral
approximation to the objective function and in bundle methods the most com-
mon way to deal with the difficulties caused by nonconvexity is to use so-called
subgradient locality measures instead of linearization error (see, e.g. [8, 10, 13]).
In our approach, the direct employment of a new cutting plane may, in the non-
convex case, cut off the current iteration point and, thus, some additional rules
for cutting planes to be accepted are needed.

The nonconvexity brings also some additional characteristics to the problem,
one of which is that the objective function may have several local minima and
maxima. As in all “non-global” optimization methods, we prove the convergence
to a stationary point. That is the point satisfying the necessary optimality condi-
tion. Furthermore, we prove that the algorithm finds a stationary point x∗ such
that f(x∗) ≤ f(x1), where x1 is a given starting point. In other words, the algo-
rithm is a descent method. Naturally, in the convex case, the stationary point is
also a global minimum of the problem.

This paper is organized in five sections. In the following section, we give a brief
background and recall the basic ideas of FDIPA. In section 3 we describe the
main features of the new method, in section 4, we examine the convergence of
the method, and in section 5 we describe the preliminary numerical experiments
that demonstrate the usability of the new method.

2 Background

In this section we first recall some basic definitions and results from both smooth
and nonsmooth analysis. Then, we discuss some basics ideas of FDIPA [4].

2

2.1 Preliminaries

In what follows, we assume the objective function to be locally Lipschitz contin-
uous. A function f : R

n → R is locally Lipschitz continuous at x ∈ R
n with a

constant L > 0 if there exists a positive number ε such that

|f(y) − f(z)| ≤ L‖y − z‖

for all y,z ∈ B(x; ε), where B(x; ε) is an open ball with center x ∈ R
n and radius

ε > 0. The algorithm to be presented generates a sequence of interior points to
the epigraph of the objective function. The epigraph of a function f : R

n → R is
a subset of R

n × R such that

epi f = {(x, r) ∈ R
n × R | f(x) ≤ r}.

For a locally Lipschitz continuous function the classical directional derivative
need not to exist. Thus, we now define the generalized directional derivative by
Clarke [2]. Moreover, we define the subdifferential for a locally Lipschitz contin-
uous function.

Definition 2.1. (Clarke). Let f : R
n → R be a locally Lipschitz continuous

function at x ∈ R
n. The generalized directional derivative of f at x in the

direction v ∈ R
n is defined by

f ◦(x; v) = lim sup
y→x

t↓0

f(y + tv) − f(y)

t

and the subdifferential of f at x is the set ∂f(x) of vectors s ∈ R
n such that

∂f(x) = { s ∈ R
n | f ◦(x; v) ≥ sT v for all v ∈ R

n }.

Each vector s ∈ ∂f(x) is called a subgradient of f at x.

The generalized directional derivate f ◦(x; d) is well defined since it always ex-
ists for locally Lipschitz continuous functions. The subdifferential ∂f(x) is a
nonempty, convex, and compact set such that ∂f(x) ⊂ B(0; L), where L > 0 is
the Lipschitz constant of f at x (see e.g. [2, 10]).

Now we recall the well known necessary optimality condition in unconstrained
nonsmooth optimization. For convex functions this condition is also sufficient and
the minimum is global.

Theorem 2.2. Let f : R
n → R be a locally Lipschitz continuous function at

x ∈ R
n. If f attains its local minimal value at x, then

000 ∈ ∂f(x).

A point x satisfying 000 ∈ ∂f(x) is called a stationary point for f .

In iterative optimization methods it is necessary to find a direction such that
the objective function values decrease when moving in that direction. Next we
define a descent direction.

3

Definition 2.3. The direction d ∈ R
n is a descent direction for f : R

n → R at
x ∈ R

n, if there exists ε > 0 such that for all t ∈ (0, ε]

f(x + td) < f(x).

For a smooth function f the direction d ∈ R
n is a descent direction at x if

dT∇f(x) < 0.
Let us now consider the inequality constrained problem

{

minimize F(x)

such that g(x) ≤ 000, x ∈ R
n,

(IEP)

where F : R
n → R and g : R

n → R
m are smooth functions. We will call

I(x) = {i | gi(x) = 0} the set of active constraint at x and we say that x

is a regular point for the problem (IEP) if the vectors ∇gi(x) for i ∈ I(x) are
linearly independent. Further, we denote by Ω the feasible set of the problem
(IEP). That is

Ω = {x ∈ R
n | g(x) ≤ 000}.

Definition 2.4. The direction d ∈ R
n is a feasible direction for the problem

(IEP) at x ∈ Ω, if for some θ > 0 we have x + td ∈ Ω for all t ∈ [0, θ].

Definition 2.5. A vector field d(x) defined on Ω is said to be a uniformly
feasible directions field of the problem (IEP), if there exists a step length τ > 0
such that x + td(x) ∈ Ω for all t ∈ [0, τ] and for all x ∈ Ω.

It can be shown that d is a feasible direction for (IEP) if dT∇gi(x) < 0 for
any i ∈ I(x). Definition 2.5 introduces a condition on the vector field d(x),
which is stronger than the simple feasibility of any element of d(x). When d(x)
constitutes a uniformly feasible directions field, it supports a feasible segment
[x,x + θ(x)d(x)], such that θ(x) is bounded below in Ω by τ > 0.

2.2 Feasible Direction Interior Point Algorithm

The feasible direction interior point algorithm FDIPA is a numerical technique
for smooth nonlinear optimization with equality and inequality constraints. We
describe now the basic ideas and computations involved in the case of the in-
equality constrained problem (IEP).

Let x∗ a regular point to the problem (IEP), the Karush-Kuhn-Tucker (KKT)
first order necessary optimality conditions are expressed as follows: If x∗ is a local
minimum of (IEP) then there exists λ∗ ∈ R

m such that

∇F(x∗) + ∇g(x∗)λ∗ = 000 (1)

G(x∗)λ∗ = 000 (2)

λ∗ ≥ 000 (3)

g(x∗) ≤ 000, (4)

where G(x) is a diagonal matrix with Gii(x) = gi(x) and ∇g(x∗) is a Jacobian
of the constraints.

FDIPA requires the following assumptions to the problem (IEP):

4

Assumption 2.1. Let Ω be the feasible set of the problem. There exists a real
number a such that the set Ωa = {x ∈ Ω | F(x) ≤ a} is compact and has a
non-empty interior Ω0

a.

Assumption 2.2. Each x ∈ Ω0
a satisfy g(x) < 000.

Assumption 2.3. The functions F and g are smooth in Ωa and their derivatives
∇F(x) and ∇gi(x) for all i = 1, . . . ,m satisfy the Lipschitz condition (i.e. there
exists L > 0 such that ‖∇F(y) −∇F(x)‖ ≤ L‖y − x‖ for all x,y ∈ R

n).

Assumption 2.4. (Regularity Condition) For all x ∈ Ωa the vectors ∇gi(x) for
i ∈ I(x) are linearly independent.

A Newton-like iteration to solve the nonlinear system of equations (1) and (2)
in (x,λ) can be stated as

[

Sk ∇g(xk)
Λk∇g(xk)T G(xk)

] [

xk+1
0 − xk

λk+1
0 − λk

]

= −

[

∇F(xk) + ∇g(xk)λk

G(xk)λk

]

(5)

where (xk,λk) is the starting point of the iteration, (xk+1
0 ,λk+1

0) is a new estimate,
Λ a diagonal matrix with Λii = λi, and Sk is a symmetric and positive definite
matrix. If Sk = ∇2F(xk) +

∑m

i=1 λk
i ∇

2gi(x
k), then the equation (5) is a Newton

iteration. However, Sk can be a quasi-Newton approximation to the Lagrangian
or even the identity matrix.

By denoting dk
0 = xk+1

0 − xk the primal direction, we obtain the linear system
in (dk

0,λ
k+1
0)

Skdk
0 + ∇g(xk)λk+1

0 = −∇F(xk) (6)

Λk∇g(xk)T dk
0 + G(xk)λk+1

0 = 000. (7)

It is easy to prove that dk
0 is a descent direction of the objective function F [4].

However, dk
0 cannot be employed as a search direction, since it is not necessarily

a feasible direction. Thus, we deflect dk
0 towards the interior of the feasible region

by means of the vector dk
1 defined by the linear system

Skdk
1 + ∇g(xk)λk+1

1 = 000 (8)

Λk∇g(xk)T dk
1 + G(xk)λk+1

1 = −λk. (9)

Now, the search direction can be calculated by

dk = dk
0 + ρkdk

1. (10)

Here the deflection bound ρk > 0 is selected such that the condition

∇F(xk)T dk ≤ α∇F(xk)T dk
0

with predefined α ∈ (0, 1) is satisfied (see Lemma 4.3 in [4]). Now, we have
∇F(xk)T dk ≤ 0, and we obtain ∇gi(x

k)T dk = −ρk < 0 for all active constraints
by (7), (9), and (10). Thus, dk is a feasible and descent direction for (IEP).

A new feasible primal point xk+1 with a lower objective value is obtained
through an inexact line search along dk. FDIPA is globally convergent (i.e. not
depending on a starting point) in the primal space for any way of updating S
and λ, provided Sk+1 is positive definite and λk+1 > 0 [4].

5

3 Method

As mentioned in the introduction, the unconstrained problem (P) can be refor-
mulated as an equivalent constrained mathematical program (EP). We dispose of
this equivalent problem (EP) by solving a sequence of auxiliary linear programs
that are constructed by substitution of f by cutting planes. That is, we solve

{

minimize F (x, z) = z

such that f(yi) − sT
i (x − yi) − z ≤ 0, for all i = 1, . . . , l,

(APl)

where yi ∈ R
n, i = 1, . . . , l, are auxiliary points, si ∈ ∂f(yi) are arbitrary

subgradients at those points, and l is the number of cutting planes currently in
use.

For each auxiliary problem (APl), a feasible descent direction is obtained using
FDIPA. When used in solving linear programming problems (as (APl)) FDIPA

has close similarity with interior point methods for linear programming [4]. Thus,
it is an efficient alternative to solve these kinds of problems. Moreover, with
FDIPA the descent direction can be computed even if (APl) has not a finite
minimum. Therefore, we do not need a quadratic stabilizing term as in standard
bundle methods (see e.g. [10]). When a descent direction is calculated, a step
length and a new auxiliary point (yl+1, wl+1) that is feasible with respect to
(APl) is computed according to given rules. Here we have denoted by wl+1 the
auxiliary point that equate to z.

When the new point is both feasible with respect to (EP) and descent for f , we
update the solution (i.e. we set (xk+1, zk+1) = (yl+1, wl+1)) and say that the step
is a serious feasible descent step. If the new point is feasible with respect to (EP)
but it fails to be descent for f , we consider the current iteration point (xk, zk)
to be too far from the boundary of the epigraph of f . In that case, we instead of
using the direction calculated by FDIPA, use the steepest descent direction −ez

(ez = [0, 0, . . . , 0, 1]T ∈ R
n+1) to obtain a point still strictly feasible but near to

the boundary of the epigraph. By this way, we have f(xk+1) = f(xk) in this new
iteration point and the next search direction generated by FDIPA can be proved
to be descent also for f . We call this step a serious steepest descent step. In the
case of either serious step we clear out all the old information stored so far. If
none of the above is valid, we take a null step. In that case we do not update the
solution but a new cutting plane is computed at (yl+1, wl+1) and a new feasible
descent direction with respect to (APl+1) is calculated using FDIPA. Then, the
procedure starts all over again.

Due to nonconvexity, it may happen that the new cutting plane makes our
current iteration point (xk, zk) infeasible (see Figure 1). In that case, we ignore
the cutting plane, backtrack along the search direction and calculate a new cutting
plane. This backtracking is continued until the current iteration point is feasible
with respect to the cutting plane (to make the method more efficient we, in fact,
check the feasibility of the point (xk, (f(xk) + zk)/2)). Due to local Lipschitz
continuity of the objective function this kind of cutting plane always exists.

We now present a model algorithm for solving minimization problems of
type (P). In what follows, we assume that at every point x ∈ R

n we can evaluate
the values f(x) and the corresponding arbitrary subgradient s ∈ ∂f(x).

6

infeasible

infeasible

feasible

dtd

td

td

η

η0.8

(x,z)
f(x)

(f(x)+z)/2

Figure 1: Problems with nonconvexity: a new cutting plane may make the cur-
rent iteration point infeasible (red cutting planes, dotted line). This drawback is
avoided by backtracking until feasibility of point (xk, (f(xk) + zk)/2) is achieved
(blue cutting plane, solid line).

Algorithm 3.1.
Data: Choose the final accuracy tolerance ε > 0. Select the control parameters

̺ > 0 and ν ∈ (0, 1) for the deflection bound. Select multipliers µ ∈ (0, 1)
and η ∈ (1/2, 1) for the step length and the maximum step length tmax > 0.

Step 0: (Initialization.) Set the iteration counter k = 1 and the cutting plane
counter l = 1. Choose a strictly feasible starting point (x1, z1) ∈ int(epi f),
a positive initial vector λ1 ∈ R

l and a symmetric positive definite matrix
S1 ∈ R

(n+1)×(n+1). Set y1
1 = x1. Compute f(x1).

Step 1: (Cutting plane for serious steps.) Compute sk
1 ∈ ∂f(xk) and the first

cutting plane

gk
1(x

k, zk) = f(xk) − zk ∈ R.

Set

∇gk
1(x

k, zk) = (sk
1,−1) ∈ R

n+1.

Define

ḡk
1(x

k, zk) = [gk
1(x

k, zk)] ∈ R

and

∇ḡk
1(x

k, zk) = [∇gk
1(x

k, zk)] ∈ R
n+1.

Step 2: (Direction finding.) Compute dk
l = (dk

x
, dk

z) ∈ R
n+1, a feasible descent

direction for (APl):

7

(i) (Descent direction.) Solve the values dk
α,l ∈ R

n+1 and λk
α,l ∈ R

l satis-
fying the linear equations

Skdk
α,l + ∇ḡk

l (x
k, zk)λk

α,l = −ez (9)

Λk
l [∇ḡk

l (x
k, zk)]T dk

α,l + Ḡk
l (x

k, zk)λk
α,l = 000, (10)

where ez = [0, 0, . . . , 0, 1]T ∈ R
n+1, Λk

l = diag[λk
1, . . . , λ

k
l], and

Ḡk
l (x

k, zk) = diag[gk
1(x

k, zk), . . . , gk
l (xk, zk)].

(ii) (Feasible direction.) Solve the values dk
β,l ∈ R

n+1 and λk
β,l ∈ R

l satis-
fying the linear equations

Skdk
β,l + ∇ḡk

l (x
k, zk)λk

β,l = 000 (11)

Λk
l [∇ḡk

l (x
k, zk)]T dk

β,l + Ḡ(xk, zk)λk
β,l = −λk

l . (12)

If eT
z dk

β,l > 0, set

ρ = min

{

̺‖dk
α,l‖

2,
(ν − 1)eT

z dk
α,l

eT
z dk

β,l

}

. (13)

Otherwise, set

ρ = ̺‖dk
α,l‖

2. (14)

(iii) (Feasible descent direction.) Compute the search direction

dk
l = dk

α,l + ρdk
β,l. (15)

Step 3: (Step length and solution updating.) Compute the step length

tk = min{tmax, max{t | ḡk
l ((x

k, zk) + tdk
l) ≤ 000}}.

If

‖dk
l ‖ ≤ ε and tk < tmax,

then stop with (xk, zk) as the final solution. Otherwise, set

(yk
l+1, w

k
l+1) = (xk, zk) + µtkdk

l

and compute the corresponding value f(yk
l+1).

If wk
l+1 ≤ f(yk

l+1), the step is not serious: go to step 6. Otherwise, call

dk = dk
l , dk

α = dk
α,l, dk

β = dk
β,l, λk

α = λk
α,l, and λk

β = λk
β,l. If f(xk) ≥ f(yk

l+1)
go to step 4 else go to step 5.

Step 4: (Serious feasible descent step.) Set (xk+1, zk+1) = (yk
l+1, w

k
l+1) and

f(xk+1) = f(yk
l+1). Wipe out all the cutting planes and update Sk to Sk+1

and λk to λk+1. Set k = k + 1, l = 1 and go to step 1.
Step 5: (Serious steepest descent step.) Set (xk+1, zk+1) = (xk, zk) − µ(zk −

f(xk))ez = (xk, zk) + µgk
1(x

k, zk)ez and f(xk+1) = f(xk). Wipe out all
the cutting planes and update Sk to Sk+1 and λk to λk+1. Set k = k + 1,
l = 1 and go to step 1.

8

Step 6: (Null step.)
(i) (Linearization error.) Compute sk

l+1 ∈ ∂f(yk
l+1) and a linearization

error

α = f(xk) − f(yk
l+1) − (sk

l+1)
T (xk − yk

l+1).

(ii) (Backtracking.) If α < gk
1(x

k, zk)/2 backtrack along the vector dk until
a “feasible point” is achieved: that is, set

(yk
l+1, w

k
l+1) = (xk, zk) + ηµtkdk,

η = 0.8η and go to step 6(i).
(iii) (Cutting planes for null steps.) Compute a new cutting plane and its

gradient

gk
l+1(x

k, zk) = −α + f(xk) − zk and

∇gk
l+1(x

k, zk) = (sk
l+1,−1).

Define

ḡk
l+1(x

k, zk) = [gk
1(x

k, zk), . . . , gk
l (xk, zk), gk

l+1(x
k, zk)]T ∈ R

l+1

and

∇ḡk
l+1(x

k, zk) = [∇gk
1(x

k, zk), . . . ,∇gk
l (xk, zk),∇gk

l+1(x
k, zk)],

∈ R
(n+1)×(l+1).

Set l = l + 1 and go to step 2.

Remark 3.1. The algorithm above cannot be immediately implemented, since it
may require unbounded storage. It does not encompass any mechanism to control
the number of cutting planes used. Moreover, we do not commit how matrices
Sk or vectors λk should be selected and updated as long as they satisfy the
assumptions given in the next section. As in FDIPA we can get different versions
of the algorithm by varying the update rules of these matrices and vectors.

Remark 3.2. We have ‖dk‖ = 000 only at the stationary point and ‖dk‖ → 000
when k → ∞, which justifies our stopping criterion in step 3. However, in theory
‖dk‖ may be rather small also before it and, thus, we check also the existence of
the finite minimum of the auxiliary problem (i.e. the step length used).

4 Convergence Analysis

In this section, we study the convergence properties of Algorithm 3.1. We will
first show that dk is a descent direction for F (i.e. for (APl) and (EP)). Then we
prove that the algorithm is a descent one and that, whenever the current iteration
point is close enough to the boundary of epi f , dk is a descent direction for f also
(i.e. for (P)). After that we show that the number of null steps at each iteration
is finite and that the sequence {(xk, zk)}k∈N is bounded. Finally, we prove that

9

every accumulation point (x∗, z∗) of the sequence {(xk, zk)}k∈N generated by the
algorithm is stationary for f (note that if the objective function is convex, this is
also a global minimum for the problem (P)). To simplify the notation we, from
now on, omit the indices k and l whenever possible without confusion.

In addition to assuming that the objective function f is locally Lipschitz con-
tinuous, the following assumptions are made:

Assumption 4.1. There exist positive numbers ω1 and ω2 such that ω1‖d‖
2 ≤

dT Sd ≤ ω2‖d‖
2 for all d ∈ R

n+1 (see [14] for less restrictive conditions for S).

Assumption 4.2. There exist positive numbers λI , λS, and gmax such that 0 <
λi ≤ λS, i = 1, . . . , l, and λi ≥ λI for any i such that ḡi(x, z) ≥ gmax.

Assumption 4.3. The set {x ∈ R
n | f(x) ≤ f(x1) } is compact.

Assumption 4.4. For all (x, z) ∈ epi f and for all i such that gi(x, z) = 0 the
vectors ∇gi(x, z) are linearly independent.

We start the theoretical analysis of Algorithm 3.1 by noting that the solutions
dα, λα, dβ, and λβ of linear systems (9), (10), and (11), (12) are unique. This
fact is a consequence of Lemma 3.1 in [11] stated as follows (using the notation
of this paper).

Lemma 4.1. For any vector (x, z) ∈ epi f , any positive definite matrix S ∈
R

(n+1)×(n+1) and any nonnegative vector λ ∈ R
l such that λi > 0 if ḡi(x, z) = 0,

the matrix

M =

[

S ∇ḡl(x, z)
Λ∇ḡl(x, z)T Ḡl(x, z)

]

is nonsingular.

It follows from the previous result that dα, λα, dβ, and λβ are bounded from
above.

Lemma 4.2. The direction dα defined by (9) and (10) satisfies

dT
αez = dT

α∇F (x, z) ≤ −dT
αSdα.

Proof. See the proof of Lemma 4.2. in [4]. �

As a consequence of the preceding lemma, we have that direction dα is a descent
direction for F (i.e. for (EP) and (APl)).

Proposition 4.3. Direction d defined by (15) is a descent direction for (EP)
and (APl).

Proof. In consequence of (15), calling to mind that ez = ∇F (x, z), we have

dT∇F (x, z) = dT
α∇F (x, z) + ρdT

β∇F (x, z).

Since ρ ≤ (ν − 1)dT
α∇F (x, z)/(dT

β∇F (x, z)) with ν ∈ (0, 1), if dT
β∇F (x, z) > 0

(see (13)), and since dα is a descent direction for F by Lemma 4.2, we obtain

dT∇F (x, z) ≤ dT
α∇F (x, z) + (ν − 1)dT

α∇F (x, z)

= νdT
α∇F (x, z)

≤ 0.

10

(note that dT∇F (x, z) = 0 only if dα = 000). On the other hand, if dT
β∇F (x, z) ≤

0 (see (14)), we have the inequality dT∇F (x, z) ≤ dT
α∇F (x, z) < 0 readily

available. Thus, d is a descent direction for F . �

Although d computed in step 2 of the algorithm is a descent direction for (EP)
and (APl), it is not necessary that for (P). Nevertheless, in the next lemma, we
prove that the algorithm is a descent one. That is, the values of function f do
not increase. After that, we prove, that when the current iteration point is close
enough to the boundary of epi f , direction d is descent also for (P).

Lemma 4.4. Let (xk, zk) ∈ int(epi f) be an iteration point generated by the algo-
rithm. For all k ≥ 1, we have

f(xk+1) ≤ f(xk) and zk+1 < zk.

Moreover, the next iteration point (xk+1, zk+1) is in int(epi f).

Proof. The iteration point (xk, zk) is updated in step 4 or step 5 of the algo-
rithm. In step 4, we set (xk+1, zk+1) = (yk

l+1, w
k
l+1) only, if wk

l+1 > f(yk
l+1) and

f(xk) ≥ f(yk
l+1). Thus, obviously, we have zk+1 > f(xk+1) (i.e. (xk+1, zk+1) ∈

int(epi f)) and f(xk+1) ≤ f(xk) after updating. Furthermore, we have (dk)T ez <
0 by Proposition 4.3. Thus, dk

z < 0 and the next component zk+1 is calculated by
the formula (see step 3 of the algorithm)

zk+1 = zk − µtkdk
z ,

with µ, tk > 0. Therefore, we have zk+1 < zk.
On the other hand, in step 5, we use the steepest descent direction −ez as a

search direction and thus, xk+1 = xk and, naturally, f(xk+1) = f(xk). We also
have

zk+1 = zk − µ(zk − f(xk)),

where µ ∈ (0, 1) and zk − f(xk) > 0 since (xk, zk) ∈ int(epi f). Thus, we again
have zk+1 < zk and zk+1 > f(xk) = f(xk+1). �

Lemma 4.5. Let a point (xk, zk) ∈ epi f lie on a sufficiently near of the boundary
of epi f (i.e. zk − f(xk) < −µtkdk

z). If (xk, zk) is not a stationary point, then the
direction dk defined by (15) is a descent direction for the problem (P) (i.e. for
f).

Proof. Since (xk, zk) ∈ epi f , we have zk = f(xk)+ǫ1 with some ǫ1 ≥ 0. We also
have (dk)T ez < 0 by Proposition 4.3, and thus, dk

z < 0. The next iteration point
is calculated by the formula (xk+1, zk+1) = (xk, zk) + µtk(dk

x
, dk

z) with µ, tk > 0.
Thus, we have zk+1 = zk − ǫ2 = f(xk) + ǫ1 − ǫ2, where we have denoted by
ǫ2 = −µtkdk

z > 0. When ǫ1 is sufficiently small (i.e. ǫ1 < ǫ2) we obviously have
zk+1 − f(xk) < 0. We also have f(xk+1) ≤ zk+1, since (xk+1, zk+1) ∈ epi f by
Lemma 4.4. By combining these two we obtain f(xk+1) ≤ zk+1 < f(xk) and dk

is a descent direction for f by definition. �

Corollary 4.6. A sequence {(xk, zk)}k∈N generated by the algorithm is bounded.

Proof. Since zk+1 < zk for all k ∈ N and by Assumption 4.3 the sequence
{(xk, zk)}k∈N belongs to the bounded set int(epi f) ∩ {(x, z) ∈ R

n+1 | z < z1}. �

11

Lemma 4.7. Direction d defined by (15) is bounded from above.

Proof. The updating rule for ρ (see (13) and (14)) ensures that we have

ρ ≤ ̺‖dα‖
2 with some ̺ > 0. (16)

On the other hand, from Lemma 4.2 and Assumption 4.1, we obtain

−dT
αez ≥ ω1‖dα‖

2,

and therefore, in view of (13), we have

ρ ≥ min

{

̺,
(1 − ν)ω1

dT
β ez

}

‖dα‖
2,

if dT
β ez > 0. Since (14) and since dβ is bounded, there exists a lower bound

̺low > 0 such that

ρ ≥ ̺low‖dα‖
2.

Hence, and by the boundedness of dα, the deflection bound ρ is positive and
bounded from above.

From (15) and (16), we have

‖d‖ = ‖dα + ρdβ‖

≤ ‖dα‖ + ‖ρdβ‖

≤ ‖dα‖ + ̺‖dα‖
2‖dβ‖

= (1 + ̺‖dα‖‖dβ‖)‖dα‖.

Therefore, there exists δ > 1 such that ‖d‖ ≤ δ‖dα‖ is valid. Due to the bound-
edness of dα, we have that d is bounded from above. �

In the next lemma we show that in step 6 of the algorithm, a point (yl+1, wl+1)
is found after a finite number of loops inside the step such that the current
iteration point (x, z) ∈ int(epi f) is feasible with respect to the cutting plane
computed at the point yl+1.

Lemma 4.8. There exists a point (yl+1, wl+1) ∈ R
n+1 such that f(x) − z ≤ α,

where α = f(x) − f(yl+1) − sT
l+1(x − yl+1) and sl+1 ∈ ∂f(yl+1). This point is

found after a finite number of loops.

Proof. For a contradiction, let us assume that there does not exist a feasible
point (yl+1, wl+1). A point (yl+1,i, wl+1,i) is calculated by the formula

(yl+1,i, wl+1,i) = (x, z) + ηiµtd

with µ, t > 0, η1 = 1, η2 ∈ (1/2, 1), and ηi+1 = 0.8ηi (i = 2, 3, . . .). Since a feasible
point (yl+1,i, wl+1,i) is not found we have

f(x) − z > f(x) − f(yl+1,i) − sT
l+1,i(x − yl+1,i) = αi

for all i ∈ N. Since ηi+1 < ηi for all i, we have ηi → 0. This implies yl+1,i → x.
By local Lipschitz continuity of the function f , we have |f(yl+1,i) − f(x)| → 0
and, therefore, also α → 0. But f(x) − z < 0 since (x, z) ∈ int(epi f) which is a
contradiction. �

12

Lemma 4.9. There exists τ > 0 such that for all (x, z) ∈ int(epi f) and for all
d ∈ R

n+1 generated by the algorithm, we have ḡl((x, z)+ td) ≤ 000 for all t ∈ [0, τ].

Proof. Let us denote by b a vector such that bi = sT
i yi−f(yi) for all i = 1, . . . , l.

Now ḡl(x, z) = (∇ḡl(x, z))T (x, z) − b, since

gi(x, z) = f(yi) + sT
i (x − yi) − z

= f(yi) + sT
i x − sT

i yi − z

= (si,−1)T (x, z) − sT
i yi + f(yi)

= (∇gi(x, z))T (x, z) − bi

for all i = 1, . . . , l. By construction, we have

t ≤ max{ti | gi((x, z) + tid) ≤ 0, i = 1, . . . , l}.

By combining these two, and noting that ∇gi(x, z) does not depend on point
(x, z) but on auxiliary points yi (i = 1, . . . , l), we obtain

gi((x, z) + tid) = (∇gi((x, z) + tid))T ((x, z) + tid) − bi

= (∇gi(x, z))T ((x, z) + tid) − bi

= (∇gi(x, z))T (x, z) − bi + ti(∇gi(x, z))T d (17)

= gi(x, z) + ti(∇gi(x, z))T d ≤ 0

for all i = 1, . . . , l. If (∇gi(x, z))T d ≤ 0, the above inequality is satisfied with
any ti > 0. Let us consider the case when (∇gi(x, z))T d > 0. By (15), we have
(∇gi(x, z))T d = (∇gi(x, z))T (dα + ρdβ), and from (10) and (12) we obtain

∇gi(x, z)T dα = −gi(x, z)
λα,i

λi

and (18)

∇gi(x, z)T dβ = −1 − gi(x, z)
λβ,i

λi

. (19)

By combining (17), (18), and (19) we obtain

gi(x, z) − tigi(x, z)
λα,i + ρλβ,i

λi

− ρti = gi(x, z)(1 − ti
λ̄i

λi

) − ρti ≤ 0,

where we have denoted by λ̄i = λα,i + ρλβ,i. Obviously ρti > 0 and gi(x, z) < 0.
Thus, the inequality is satisfied if

ti
λ̄i

λi

≤ 1.

Now, λ is bounded by Assumption 4.2 and, since λα, λβ and ρ are bounded
from above, also λ̄ is bounded from above. Thus, there exists τ > 0 such that
λi/λ̄i > τ for all i = 1, . . . , l and for all t ∈ [0, τ], we have gi((x, z) + td) ≤ 0. �

The next Lemma gives us a technical result to be used later on.

Lemma 4.10. Let X be a convex set and let x0 ∈ int X and x̄ ∈ X. Let the
sequence {x̄k} ⊂ R

n\X such that x̄k → x̄ and let xk be defined by xk = x0 +
µ(x̄k − x0) with some µ ∈ (0, 1). Then there exist k0 ∈ N such that xk ∈ int X
with all k ≥ k0.

13

Proof. Let us suppose that xk = x0 + µ(x̄k − x0) → x0 + µ(x̄ − x0) = µx̄ +
(1−µ)x0 = xµ. Since the segment [x0, x̄] ⊂ X and µ < 1, we obtain xµ ∈ int X.
Thus, there exists δ > 0 such that B(xµ; δ) ⊂ int X. When xk → xµ there exists
k0 ∈ N such that xk ∈ B(xµ, δ) with all k ≥ k0. �

Lemma 4.11. Let (ȳ, w̄) be an accumulation point of the sequence {(yi, wi)}i∈N

generated by the algorithm. Then w̄ = f(ȳ).

Proof. A new auxiliary point (yi, wi) is calculated in step 3 of the algorithm. If
wi > f(yi) we take a serious step (i.e. we go to step 4 or to step 5). Thus, in the
accumulation point we have w̄ ≤ f(ȳ). Suppose now that w̄ < f(ȳ). Consider
the cutting plane f̄si

(x) = f(ȳ)+si(x− ȳ) with some si ∈ ∂f(ȳ). Let f̄si
be the

new constraint for (APi) (i.e. gi(x, z) = f̄si
(x) − z).

Let us denote by r = D((ȳ, w̄); f̄si
) the distance between the point (ȳ, w̄) and

the plane f̄si
. Since w̄ < f(ȳ) we have r > 0. Set B̄ = B((ȳ, w̄); r

2
). Obviously,

B̄ ∩ f̄si
= ∅. Now, (yi, wi) ∈ epi f̄si

with any i and B ⊂ (epi f̄si
)c. Thus (yi, wi) 6∈

B̄, which is a contradiction. �

Lemma 4.12. Let (xk, zk) ∈ int(epi f). The next iteration point (xk+1, zk+1) ∈
int(epi f) is found after a finite number of sub-iterations (i.e. loops from step 6
to step 2 of the algorithm).

Proof. The new iteration point (xk+1, zk+1) is in the interior of epi f by
Lemma 4.4. Thus, we only need to prove that it is found after finite number
of iterations.

A new auxiliary point (yi, wi) is found after a finite number of loops inside
step 6 by Lemma 4.8. If wi > f(yi) we take a serious step (step 4 or 5) and, obvi-
ously, (x, z) ∈ epi f . The sequence {(yi, wi)}i∈N is bounded by construction and
thus there exists an accumulation point (ȳ, w̄). By Lemma 4.11 this accumulation
point is on the boundary of epi f .

Let us denote by f̄si
(x) = f(yi) + sT

i (x − yi) the cutting plane corresponding

to the ith constraint and by f̂(x) = max{f̄si
(x) | i = 1, . . . , l} the piecewise

linear function that is maximum of all cutting planes at the accumulation point
(ȳ, w̄). By Lemma 4.10 there exists i0 ∈ N such that (yi0

, wi0) ∈ int(epi f̂). We
will now show that (yi0

, wi0) ∈ int(epi f) although epi f is nonconvex.
For a contradiction purposes, suppose now that (yi0

, wi0) 6∈ int(epi f). That is
f(yi0

) ≥ wi0 . A null step occurs and we have a new cutting plane. Now (yi0
, wi0)

is in a line segment connecting the accumulation point (ȳ, w̄) and the current iter-
ation point (xk, zk), below the epigraph of f . Thus, the new cutting plane makes
the point (ȳ, w̄) infeasible (it can not make the current iteration point infeasible).
But then (ȳ, w̄) can not be an accumulation point, which is a Contradiction.

Thus, we have (yi0
, wi0) ∈ int(epi f) and we either set (xk+1, zk+1) = (yik

, wik)
(in step 4 of the algorithm) or a serious steepest descent step occurs (step 5 of
the algorithm). �

Lemma 4.13. Let d∗
α be an accumulation point of the sequence {dk

α}k∈N. Then
d∗

α = 000.

14

Proof. By construction we have

(xk+1, zk+1) = (xk, zk) + µtkdk or

(xk+1, zk+1) = (xk, zk) − µ(zk − f(xk))ez.

The sequence {(xk, zk)}k∈N is bounded by Corollary 4.6. Let us denote by
x∗ = limk→∞ xk and z∗ = limk→∞ zk and let K ⊂ N be such that {tk}k∈K → t∗.
It follows from Lemma 4.9 that we have t∗ > 0.

When k → ∞, k ∈ K we have

z∗ = z∗ + µt∗d∗
z or

z∗ = (1 − µ)z∗ + µf(x∗).

In other words, we either have d∗
z = 0 or z∗ = f(x∗). However, due to Lemma 4.5

the latter is not the case (d∗ is a descent direction for f or d∗ = 000). Thus d∗
z = 0.

By Proposition 4.3, we have

0 = d∗
z = (d∗)T ez ≤ ν(d∗

α)T ez = νd∗
α,z ≤ 0

with some ν ∈ (0, 1) and thus d∗
α,z = 0. Further, by Lemma 4.2 we have

0 = d∗
α,z = (d∗

α)T ez ≤ −(d∗
α)T Sd∗

α ≤ 0

and by positive definiteness of S we conclude that d∗
α = 000. �

It follows from the previous result that dk → 000 when k → ∞. This fact justifies
the termination criterion for the algorithm.

Lemma 4.14. Let (si,−1) be the gradient of the active constraint at the accu-
mulation point (x∗, z∗) of the sequence {(xk, zk)}k∈N generated by the algorithm.
Then si ∈ ∂f(x∗).

Proof. Since at the accumulation point (x∗, z∗) we have f(x∗) = z∗ the first
constraint g1(x

∗, z∗) is active and s1 ∈ ∂f(x∗) by construction (see step 1 of the
algorithm).

Suppose now that the constraint gi(x
∗, z∗), i > 1, is active. Let us denote

by f̄si
(x) = f(yi) + sT

i (x − yi) the cutting plane corresponding to the active
constraint. That is, f̄si

(x∗) = z∗. At the vicinity of the accumulation point, say
x ∈ B(x∗; σ) with some σ > 0, we have f̄si

(x) is a lower approximation of
the objective function f(x) or s1 = 000 (in which case the algorithm has already
stopped). Therefore we have for all x ∈ B(x∗; σ), σ > 0, and si ∈ ∂f(yi)

f(x) ≥ f(yi) + sT
i (x − yi)

= f(yi) − f(x∗) + f(x∗) + sT
i (x − yi) − sT

i (x − x∗) + sT
i (x − x∗)

= f(x∗) + sT
i (x − x∗) + f(yi) + sT

i (x∗ − yi) − f(x∗)

= f(x∗) + sT
i (x − x∗) + gi(x

∗, z∗)

= f(x∗) + sT
i (x − x∗),

since f(x∗) = z∗ and gi(x
∗, z∗) = 0.

15

Now, if we denote x = x∗ + tv, where v ∈ R
n, t > 0 we can write

f(x) − f(x∗) ≥ sT
i (x − x∗) = tsT

i v

for all x ∈ B(x∗; σ) and we obtain

f ◦(x∗; v) = lim sup
x′

→x∗

t↓0

f(x′ + tv) − f(x′)

t

≥ lim sup
t↓0

f(x∗ + tv) − f(x∗)

t

≥ lim sup
t↓0

tsT
i v

t
= sT

i v,

Therefore, by the definition of the subdifferential si ∈ ∂f(x∗). �

In the next lemma we prove that since the auxiliary problem is convex we have
λk

α positive or zero at the solution.

Lemma 4.15. For k large enough, we have λk
α ≥ 000.

Proof. Let us consider the following convex optimization problem
{

minimize Φ(x, z)

such that ḡl(x, z) ≤ 000,

where Φ(x, z) = z + dT
αSx. A KKT-point (xΦ, zΦ) of the problem satisfies

∇z + Sdα + ∇ḡl(x
Φ, zΦ)λΦ = 000 (20)

Ḡl(x
Φ, zΦ)λΦ = 000 (21)

λΦ ≥ 000 (22)

ḡl(x, z) ≤ 000. (23)

Systems (9) and (10) in step 2 of the algorithm can be rewritten as

∇z + Sdk
α + ∇ḡk

l (x
k, zk)λk

α = 000

Ḡk
l (x

k, zk)λk
α = ϕk,

where ϕk = −Λk
l [∇ḡk

l (x
k, zk)]T dk

α. When dk
α → 000 we have that ϕk → 000 and then,

for given ε1 > 0, there exists K1 > 0 such that

‖λk
α − λΦ‖ < ε1 for k > K1.

Then as λΦ ≥ 000 by (22) we deduce that λk
α ≥ 000 for k large enough. �

Theorem 4.16. For any accumulation point (x∗, z∗) of the sequence
{(xk, zk)}k∈N we have 000 ∈ ∂f(x∗).

Proof. Consider the equations (9) and (10). When k → ∞ we have d∗
α = 000 by

Lemma 4.13. Thus, we obtain

∇ḡ∗
l (x

∗, z∗)λ∗
α = −ez and ḡ∗

l (x
∗, z∗)λ∗

α = 000,

16

where we have denoted by λ∗
α the vector of Lagrange multiplies corresponding to

d∗
α and by ḡ∗

l (x
∗, z∗) the corresponding constraints.

Since

∇ḡ∗
l (x

∗, z∗) =

[

s1 s2 . . . sl

−1 −1 . . . −1

]

and λ∗
α = [λ∗

α,1, λ
∗
α,2, . . . , λ

∗
α,l]

T ,

we obtain

l
∑

i=1

λ∗
α,isi = 000 and

l
∑

i=1

λ∗
α,i = 1.

Let us now denote by I = {i | g∗
i (x

∗, z∗) = 0} the set of indices of active
constraints and by J = {j | g∗

j(x
∗, z∗) < 0} the set of inactive constrains at

(x∗, z∗). Now

g∗
i (x

∗, z∗)λ∗
α,i = 0 for all i ∈ I and

g∗
j(x

∗, z∗)λ∗
α,j = 0 for all j ∈ J .

Thus λ∗
α,j = 0 for all j ∈ J and further

∑

i∈I

λ∗
α,isi = 000 and

∑

i∈I

λ∗
α,i = 1.

By Lemma 4.14 we have si ∈ ∂f(x∗) for all i ∈ I. By convexity of subdifferential
and since λ∗

α,i ≥ 0 by Lemma 4.15 for all i ∈ I we obtain

000 =
∑

i∈I

λ∗
α,isi ∈ ∂f(x∗).

�

5 Numerical Experiments

In this section we present some preliminary results obtained with Algorithm 3.1.
However, first we will say few words about implementation.

5.1 Implementation

Wiping out all the cutting planes after every serious steps works well in theory.
In practice, it makes the method rather inefficient. Thus, when solving convex
problems we do not clear out the memory at all. In the convex case, the cutting
planes are always lower approximations for the objective function and, therefore,
this does not cause any problems.

In the nonconvex case, cutting planes are not necessarily lower approximations
for the objective function and thus, they may cut out the minimum point. This
happens, for instance, in Figure 1. To preserve the efficiency but avoid cutting
out the minimum when solving nonconvex problems, we cleared out the memory
only after every 10th, 20th or 40th iterations (depending on the problem).

17

The algorithm was implemented in MatLab in a microcomputer Pentium III
500MHz with 2 GB of RAM. The input parameters for the algorithm have been
set as follows: first we set S = I, ̺ = 1, and ν = 0.1 for all the problems and
then we selected the best combination of the values from ε = 10−4 or 10−5,
µ = 0.7, 0.75 or 0.8, and tmax = 1 or 10 individually depending on the problem.
The maximum number of stored cutting planes was set to be 5 × n with no
aggregation procedure (see e.g. [3, 10] for possible modes of aggregation). The
update rule for vector λk was selected to be the same as in FDIPA [4].

5.2 Results

We tested the performance of the algorithm through a set of problems [9] that are
widely used in testing new solvers for nonsmooth optimization. All test problems,
except for the Rosenbrock problem, are nonsmooth and there are both convex
and nonconvex problems.

The results are given in Table 1, where we have denoted by n the number
of variables and by “+” (convex) and “−” (nonconvex) the convexity of the
problem. The final value of the objective function obtained with our algorithm is
denoted by f ∗ and f opt denotes the optimal value of the problem as reported in
[9]. Additionally, we have denoted by “ss” the number of serious step, “ns” the
number of null step, and “nf” the number of function and subgradient calls used
by our algorithm.

Table 1: Result of the numerical experiments.
No. Problem n Convex ss ns nf f∗ fopt

1 Rosenbrock 2 − 73 31 146 7.81296 · 10−7 0
2 Crescent 2 − 33 1 43 0.007851 0
3 CB2 2 + 14 6 21 1.95222 1.9522245
4 CB3 2 + 15 9 25 2.00017 2
5 DEM 2 + 17 2 20 −2.99977 −3
6 QL 2 + 31 2 34 7.20001 7.20
7 LQ 2 + 9 2 12 −1.41394 −1.4142136
8 Mifflin1 2 + 7 11 19 −0.99996 −1
9 Mifflin2 2 − 10 9 20 −0.99999 −1
10 Wolfe 2 + 43 10 54 −7.99992 −8
11 Rosen 4 + 45 14 60 −43.99998 −44
12 Shor 5 + 49 23 73 22.60016 22.600162
13 Colville 1 5 − 95 114 210 −32.34845 −32.348679
14 HS78 5 − 851 384 2048 −2.91965 −2.9197004
15 El-Attar 6 − 200 287 1028 0.55993 0.5598131
16 Maxquad 10 + 12 53 66 −0.84140 −0.8414083
17 Gill 10 − 148 649 806 9.78599 9.7857
18 Steiner 2 12 − 26 65 92 16.70385 16.703838
19 Maxq 20 + 84 282 367 1.4695 · 10−8 0
20 Maxl 20 + 80 32 113 2.1196 · 10−4 0
21 TR48 48 + 22 103 126 −638564.99 −638565.0
22 Goffin 50 + 28 43 72 5.87864 · 10−5 0
23 MXHILB 50 + 197 8 206 2.90245 · 10−5 0
24 L1HILB 50 + 66 39 106 1.61292 · 10−5 0
25 Shell Dual 15 − 536 856 1652 32.34890 32.348679

18

The new algorithm solved all the problems robustly and efficiently. When com-
paring our algorithm with some other solvers given in the literature, that is the
nonconvex cutting plane method NCVX by Fuduli et. al. [3] and the proximal
bundle method PB by Mäkelä and Neittaanmäki [10], we see that the numbers of
used function and subgradient evaluations of our algorithm are comparable with
those of NCVX and PB. Further, in both of these other solvers, a quite compli-
cated quadratic programming subproblem needs to be solved in every iteration
and, thus, in terms of used computational time the efficiency of our algorithm
may be even better than that with these solvers. Naturally, more testing should
and will be done.

6 Conclusions

We have introduced a new algorithm for nonconvex nonsmooth optimization and
proved its global convergence to locally Lipschitz continuous objective functions.
The presented algorithm is simple to code since it does not require the solution
of quadratic programming subproblems but merely of two linear systems with
the same matrix. The preliminary numerical examples were solved both robustly
and efficiently.

The lack of quadratic subproblems alludes to the possibility of dealing with
large-scale problems. This will be one of the tasks to be studied in future. In
this context also some other solvers for linear programming problems will be
tested. On the other hand, FDIPA is well capable in solving nonlinear problems
and, thus, it might be interesting to add the quadratic stabilizing term similar
to standard bundle methods to our model. The quadratic stabilizing term could
substitute our serious steepest descent step which keeps our model local enough.

Acknowledgements

The authors would like to thank Prof. Marko M. Mäkelä (University of Turku,
Finland) for the valuable comments and Prof. Tapio Westerlund (Abo Akademi
University, Finland) for financial support.

The work was financially supported by the Research Councils CAPES, CNPq
and Faperj (Brazil), COPPE / Federal University of Rio de Janeiro (Brazil),
University of Turku (Finland), Magnus Ehrnrooth foundation (Finland), and the
Academy of Finland (Project No. 127992).

References

[1] Cheney, E. W., and Goldstein, A. A. Newton’s method for convex
programming and Tchebycheff approximation. Numeriche Mathematic 1
(1959), 253–268.

[2] Clarke, F. H. Optimization and Nonsmooth Analysis. Wiley-Interscience,
New York, 1983.

19

[3] Fuduli, A., Gaudioso, M., and Giallombardo, G. A DC piecewise
affine model and a bundling technique in nonconvex nonsmooth minimiza-
tion. Optimization Methods and Software 19, 1 (2004), 89–102.

[4] Herskovits, J. Feasible direction interior-point technique for nonlinear
optimization. Journal of Optimization Theory and Applications 99, 1 (1998),
121–146.

[5] Herskovits, J., Freire, W., and Tanaka Fo., M. A feasi-
ble directions method for nonsmooth convex optimization. Tech-
nical Report, Mechanical Engineering Program-COPPE/UFRJ,
Rio de Janeiro, julho, 2009. Available in web page <URL:
http://www.optimization-online.org/DB HTML/2010/01/2517.html>
(January 11th, 2010).

[6] Hiriart-Urruty, J.-B., and Lemaréchal, C. Convex Analysis and
Minimization Algorithms II. Springer-Verlag, Berlin, 1993.

[7] Kelley, J. E. The cutting plane method for solving convex programs.
Journal of the SIAM 8 (1960), 703–712.

[8] Kiwiel, K. C. Methods of Descent for Nondifferentiable Optimization.
Lecture Notes in Mathematics 1133. Springer-Verlag, Berlin, 1985.

[9] Lukšan, L., and Vlček, J. Test problems for nonsmooth unconstrained
and linearly constrained optimization. Technical Report 798, Institute of
Computer Science, Academy of Sciences of the Czech Republic, Prague, 2000.

[10] Mäkelä, M. M., and Neittaanmäki, P. Nonsmooth Optimization:
Analysis and Algorithms with Applications to Optimal Control. World Sci-
entific Publishing Co., Singapore, 1992.

[11] Panier, E. R., Tits, A. L., and Herskovits, J. N. A QP-free, globally
convergent, locally superlinearly convergent algorithm for inequality con-
strained optimization. SIAM Journal on Control and Optimization 26, 4
(1988), 788–811.

[12] Passarela, W. An Algorithm of Feasible Directions to Nonsmooth Convex
Optimization (in Portuguese). PhD thesis, COPPE - Federal University of
Rio de Janeiro, Mechanical Engineering Program, Rio de Janeiro, Brazil,
2005.

[13] Schramm, H., and Zowe, J. A version of the bundle idea for minimiz-
ing a nonsmooth function: Conceptual idea, convergence analysis, numerical
results. SIAM Journal on Optimization 2, 1 (1992), 121–152.

[14] Tits, A. L., Wächter, A., Bakhtiari, S., Urban, T. J., and

Lawrence, C. T. A primal-dual interior-point method for nonlinear pro-
gramming with strong global and local convergence properties. SIAM Jour-
nal on Optimization 14, 1 (2003), 173–199.

20

