
EngOpt 2008 - International Conference on Engineering Optimization

Rio de Janeiro, Brazil, 01 - 05 June 2008.

Limited Memory Bundle Method for Large Bound Constrained
Nonsmooth Optimization

Napsu Karmitsa

Department of Mathematics, University of Turku, FI-20014 Turku, Finland. E-mail: napsu@karmitsa.fi

1. Abstract

Practical optimization problems often involve nonsmooth functions of hundreds or thousands of vari-
ables. As a rule, the variables in such large problems are restricted to certain meaningful intervals.
In the report [Haarala, Mäkelä, 2006] we have described an efficient adaptive limited memory bundle
method for large-scale nonsmooth, possibly nonconvex, bound constrained optimization. Although it
works very well in numerical experiments it suffers from one theoretical drawback. Namely, it is not
necessarily globally convergent. In this paper, a globally convergent variant of this method is proposed.
In addition, some results from numerical experiments are given.
2. Keywords: Nondifferentiable programming, large-scale optimization, bundle methods, limited mem-
ory methods, box constraints.

3. Introduction

In this paper, we descripe an adaptive limited memory bundle algorithm (LMBM-B) for solving large,
possibly nonconvex, nonsmooth (nondifferentiable) bound constrained optimization problems. We write
this problem as

{

minimize f(x)

subject to xl ≤ x ≤ xu,
(1)

where the objective function f : R
n → R is supposed to be locally Lipschitz continuous and the number

of variables n is supposed to be large (say 1000 or more). Moreover, the vectors xl and xu representing
the lower and the upper bounds on the variables are fixed and the inequalities in Eq.(1) are taken
component-wise. A point x ∈ R

n satisfying the bounds is called feasible and a set F of all feasible points
is called the feasible region for problem (1). That is, F = {x ∈ R

n | xl ≤ x ≤ xu}.
In [1, 2, 3] we have proposed a limited memory bundle method (LMBM) for general, possibly

nonconvex, nonsmooth large-scale unconstrained optimization. LMBM is a hybrid of the variable metric
bundle methods [4, 5] and the limited memory variable metric methods (see e.g. [6, 7]), where the first
ones have been developed for small- and medium-scale nonsmooth optimization and the latter ones,
on the contrary, for smooth large-scale optimization. LMBM exploits the ideas of the variable metric
bundle methods, namely the utilization of null steps and simple aggregation of subgradients (generalized
gradients [8]), but the search direction is calculated using a limited memory approach. Therefore, the
time-consuming quadratic direction finding problem appearing in standard bundle methods (see e.g.
[9, 10, 11]) need not to be solved and the number of stored subgradients (i.e. the size of the bundle) is
independent of the dimension of the problem. Furthermore, LMBM uses only few vectors to represent
the variable metric updates and, thus, it avoids storing and manipulating large matrices as is the case
in variable metric bundle methods [4, 5].

In [12], a new variant of the method, LMBM-B, suitable for solving bound constrained problems
was introduced. The constraint handling in LMBM-B is based on gradient projection (naturally, we use
subgradients instead of gradients) and dual subspace minimization and it is adopted from the smooth
limited memory BFGS method for bound constrained optimization [13]. Although numerically very
efficient, the method described in [12] is not necessary globally convergent in nonsmooth case.

In order to prove the global convergence of LMBM-B some modifications had to be made. Namely,
we included stark projections in aggregation procedure to guarantee the convergence of aggregate sub-
gradients to zero, some corrections to limited memory matrices to preserve sufficient positive definiteness
and boundedness of these matrices whenever necessary, and a slightly modified line search procedure.
Although this may sound like an easy task several open question had to be answered and many imple-
mentational challenges had to be solved before preserving even a hint of the efficiency of the previous
version together with the theoretical convergence properties.

1



In what follows, we assume that at every feasible point x ∈ F we can evaluate the value of the
objective function f(x) and an arbitrary subgradient ξ ∈ R

n from the subdifferential [8]

∂f(x) = conv{ lim
i→∞

∇f(xi) | xi → x and ∇f(xi) exists }, (2)

where “conv” denotes the convex hull of a set.

4. Method

The globally convergent version of LMBM-B (see Figure 1) is characterized by the usage of null steps
together with the aggregation and projection of subgradients. Moreover, the limited memory approach is
utilized in the calculation of the search direction and the aggregate values. The usage of null steps gives
further information about the nonsmooth objective function in the case the search direction is not “good
enough”. On the other hand, simple aggregation and stark projection of subgradients guarantees the
convergence of projected aggregate subgradients to zero and make it possible to evaluate a termination
criterion.

Line search and
solution updating.

Increase the number of
stored correction pairs
by one if applicable.

Almost
desired accuracy?

Yes
STOP.Desired accuracy?

Increase the number of
stored correction pairs
by one if applicable.

Calculation of the generalized
Cauchy point and determination
of an active set.

Direction finding using the
limited memory SR1 update.
Variables in the active set 
remains fixed.

Projection and

Aggregation.

Calculation of the generalized
Cauchy point and determination
of an active set.

Direction finding using the
limited memory BFGS update.
Variables in the active set 
remains fixed.

Serious step initialization.

Almost
desired accuracy?

No

Initialization.

Yes
STOP.Desired accuracy?

Serious step

No No

Yes

Null step

Yes

No

Figure 1: Adaptive limited memory bundle method with bounds.

2



The search direction is calculated using two-stage approach. First, we define the quadratic model function
qk that approximates the objective function at the iteration point xk by

qk(x) = f(xk) + ξ̃
T

k (x − xk) +
1

2
(x − xk)T Bk(x − xk). (3)

Here ξ̃k is the aggregate subgradient of the objective function and Bk is a positive definite limited memory
variable metric update that, in smooth case, represents the approximation of the Hessian matrix. Now,
the generalized gradient projection method is used to find the generalized Cauchy point xc

k [14] and, at
the same time, to identify the active set Ik

A of the problem. The procedure used in LMBM-B is rather
similar to that in [13]. We only use here the aggregate subgradient of the objective function instead of
gradient and, in addition to the limited memory BFGS update formula, we utilize the limited memory
SR1 update whenever necessary. That is, after a null step (see Figure 1).

The generalized Cauchy point at iteration k is defined as the first local minimizer (starting from xk)
of the univariate piecewise quadratic function

q̂k(t) = qk(Pc[xk − tξ̃k,xl,xu]), (4)

along the projected gradient direction Pc[xk − tξ̃k,xl,xu]−xk (see e.g. [14]). Here we have defined the
projection operator Pc[·] (component-wise) by

Pc[x,xl,xu]i =











xl
i, if xi < xl

i

xi, if xi ∈ [xl
i, x

u
i ]

xu
i , if xi > xu

i .

(5)

This operator projects the point x into the feasible region F defined by bounds xl and xu. Now, if we
denote by tck the value of t corresponding to the first local minimum of q̂k(t), the generalized Cauchy
point is given by

xc
k = Pc[xk − tckξ̃k,xl,xu]. (6)

The variables whose values at xc
k are at lower or upper bound, comprise the active set Ik

A = {i | xc
k,i =

xl
i or xc

k,i = xu
i }. Here, we have denoted by xc

k,i the ith component of the vector xc
k. The calculation

of this generalized Cauchy point makes it possible to add and delete several bounds from the active set
during a single iteration, which may be an important feature for both nonsmooth [15] and large-scale [16]
problems. For the practical computation of generalized Cauchy point see [12, 13, 17].

When the generalized Cauchy point has been found, we approximately minimize the quadratic model
function (3) over the space of free variables, in other words, the variables in the active set are treated
as equality constraints. The subspace minimization procedure used is in principal the same as the dual
space method in [13] but, as before, we use the aggregate subgradient of the objective function and we
utilize the limited memory SR1 update if the previous step taken was a null step.

We solve d from the smooth quadratic problem











minimize ξ̃k

T
d + 1

2
dT Bkd

such that AT
k d = bk and

xl ≤ xk + d ≤ xu,

(7)

where Ak is the matrix of active constraints gradients at xc
k and bk = AT

k (xc
k − xk). Note that Ak

consists of nA unit vectors (here nA is the number of elements in the active set Ik
A) and AT

k Ak is equal
to identity.

We first ignore the bound constraints. The first order sufficient optimality conditions for problem (7)
without bounds are

ξ̃k + Bkd∗

k + Akµ∗

k = 000 (8)

AT
k d∗

k = bk. (9)

3



Now, by multiplying Eq.(8) by AT
k Dk (we denote by Dk the update formula that is inverse of Bk) and

by using Eq.(9), we obtain

(AT
k DkAk)µ∗

k = −AT
k Dkξ̃k − bk, (10)

which determines Lagrange multipliers µ∗

k ∈ R
nA . The linear system (10) can be solved by utilizing the

Sherman-Morrison-Woodbury formula and the compact representation of limited memory matrices (see
[13]). Thus, d∗

k can be given by

Bkd∗

k = −Akµ∗

k − ξ̃k. (11)

If there are no active variables, we simply obtain d∗

k = −Dkξ̃k, which is the formula used also in the
original unconstrained version of the limited memory bundle method [1, 2, 3]. In the case the vector
xk +d∗

k violates the bounds in Eq.(7), we, similarly to [13], backtrack along the line joining the infeasible
point xk+d∗

k and the generalized Cauchy point xc
k to regain the feasible region. That is, we first compute

α∗

k = min
{

1,max{α | xl
i ≤ xc

k,i + α(xk,i + d∗i − xc
k,i) ≤ xu

i , i ∈ Ik
F }

}

, (12)

where Ik
F = {j | j = {1, . . . , n} \ Ik

A} is the set of free variables, and then we set x̄ = xc
k+α∗

k(xk+d∗

k−xc
k)

and dk = x̄ − xk. Again, see [12, 13, 17] for details of the practical computations.
LMBM-B generates a sequence of basic points (xk) ⊂ F together with a sequence of auxiliary points

(yk) ⊂ F . A new iteration point xk+1 and a new auxiliary point yk+1 are produced using a special line
search procedure [17] such that

xk+1 = xk + tkLdk and (13)

yk+1 = xk + tkRdk, for k ≥ 1

with y1 = x1, where tkR ∈ (0, tkmax] and tkL ∈ [0, tkR] are step sizes, tkmax ≥ 1 is the upper bound for the
step size that assures the feasibility of produced points.

A necessary condition for a serious step is to have

tkR = tkL > 0 and f(yk+1) ≤ f(xk) − εLtkRwk, (14)

where εL ∈ (0, 1/2) is a line search parameter and wk > 0 represents the desirable amount of descent of
f at xk. If condition (14) is satisfied, we set xk+1 = yk+1 and a serious step is taken.

Otherwise, we take a null step. In this case, the usage of special line search procedure guarantees
that we have

tkR > tkL = 0 and − βk+1 + Pxk
[ξ̃k ]T DkPxk

[ξk+1 ] ≥ −εRwk, (15)

where εR ∈ (εL, 1/2) is a line search parameter, ξk+1 ∈ ∂f(yk+1), Px[ξ ] denotes a stark projection of ξ

at x (to be described short after), and βk+1 is the subgradient locality measure [18, 19] similar to bundle
methods. In the case of a null step, we set xk+1 = xk but information about the objective function is
increased because we store the auxiliary point yk+1 and the corresponding auxiliary subgradient ξk+1.

LMBM-B uses the original subgradient ξk after the serious step and the aggregate subgradient ξ̃k

after the null step for direction finding (i.e. we set ξ̃k = ξk if the previous step was a serious step).
The aggregation procedure used in the previous versions of LMBM [1, 2, 3, 12] is similar to that of the
original variable metric bundle methods [4, 5] except that the variable metric updates are calculated
using limited memory approach. However, in order to guarantee the global convergence of the bound
constrained version, we need to consider projections of subgradients instead of original subgradients in
the aggregation procedure. It may seem that utilization of active set Ik

A in the projection procedure
would be a natural choice. However, active set Ik

A is calculated at the generalized Cauchy point xc
k

and it may change in consecutive null steps, which is highly undesirable from the view point of global
convergence. Therefore, we instead calculate a very simple projection at point xk that is not changing
(xk+1 = xk in null steps). We define this projection operator Px[·] at point x (component-wise) by

Px[ξ ]i =











0, if xl
i − xi ≥ 0

ξi, if xi ∈ (xl
i, x

u
i )

0, if xu
i − xi ≤ 0.

(16)

In what follows we call this stark projection the Px-projection (at point x).

4



Now, the aggregation procedure is made by determining multipliers λk
i satisfying λk

i ≥ 0 for all

i ∈ {1, 2, 3}, and
∑3

i=1 λk
i = 1 that minimize the function

ϕ(λ1, λ2, λ3) = Pxk
[λ1ξm + λ2ξk+1 + λ3ξ̃k ]T DkPxk

[λ1ξm + λ2ξk+1 + λ3ξ̃k ] (17)

+ 2(λ2βk+1 + λ3β̃k).

Here ξm ∈ ∂f(xk) is the current subgradient (m denotes the index of the iteration after the latest serious
step, i.e. xk = xm), ξk+1 ∈ ∂f(yk+1) is the auxiliary subgradient, and ξ̃k is the current aggregate

subgradient from the previous iteration (ξ̃1 = ξ1). In addition, βk+1 is the current locality measure and
β̃k is the current aggregate locality measure (β̃1 = 0).

The next ξ̃k+1 is defined as a convex combination of the subgradients mentioned above:

ξ̃k+1 = λk
1ξm + λk

2ξk+1 + λk
3 ξ̃k (18)

and the next β̃k+1 as a convex combination of the locality measures:

β̃k+1 = λk
2βk+1 + λk

3 β̃k. (19)

Px-projection depends only on point x and not on the subgradient ξ on focus. Thus, Pxk
[λ1ξm+λ2ξk+1+

λ3ξ̃k] = λ1Pxk
[ξm ] +λ2Pxk

[ξk+1 ] +λ3Pxk
[ξ̃k ] and this makes the minimization of function (17) rather

an easy task.
We utilize the limited memory approach (see e.g. [6, 7] and Appendix) in the calculation of the

generalized Cauchy point, search direction, and aggregate values. The idea of limited memory matrix
updating is, instead of storing the large n × n -matrices Bk and Dk, to store a certain (usually small
constant) number m̂c of vectors, so-called correction pairs obtained at the previous iterations of the
algorithm, and to use these correction pairs to implicitly define the variable metric matrices. When the
storage space available is used up, the oldest correction pair is deleted to make room for new one; thus,
except for the first few iterations, we always have the m̂c most recent correction pairs available.

The utilization of limited memory approach naturally means that the variable metric updates are
not as accurate as if we used standard variable metric updates (see e.g. [20]). However, both the storage
space required and the number of operations needed in the calculations are significantly smaller. Namely,
the number of operations needed is O(n) while with standard variable metric updates used in original
variable metric bundle methods [4, 5], it is O(n2).

In the adaptive LMBM , first introduced in [1] and then used in [12] and here, the number of stored
correction pairs m̂c may change during the computation. This means that we can start the optimization
with a small m̂c and when we are closer to the optimal point, m̂c may be increased until some predefined
upper limit m̂u is achieved. The aim of this adaptability is to improve the accuracy of the basic method
without loosing much from efficiency, that is, without increasing computational costs too much.

The limited memory variable metric matrices used in our algorithm are represented in the compact
matrix form originally described in [6]. We use both the limited memory BFGS and the limited memory
SR1 update formulae in the calculations of the search direction and the aggregate values. If the previous
step was a null step, the matrices Dk and Bk are formed using the limited memory SR1 updates
(see Appendix, Eq.(26) and Eq.(27)). The SR1 update formulae give us a possibility to preserve the
boundedness and some other properties of generated matrices that guarantee the global convergence of
the method. Otherwise, since these properties are not required after a serious step, the more efficient
limited memory BFGS updates (see Appendix, Eq.(21) and Eq.(24)) are employed.

The SR1-update formulae do not in general preserve the positive definiteness. Moreover, both the
nonconvexity and bounds may prevent the condition dT

i (ξi+1−ξm) > 0 for all i = 1, ..., k−1, that is the
classical condition for the positive definiteness of the BFGS update, from satisfying. Thus, to maintain
the positive definiteness of the generated matrices, we simply skip the individual updates (discard the
newest correction pair not the oldest one) if they would violate positive definiteness.

The basic assumption for bundle methods to converge is that after a null step we have zT Dk+1z ≤
zT Dkz for all z ∈ R

n. In LMBM-B this is guaranteed by the special limited memory SR1 update
[1, 3]. In addition, to ensure the global convergence of the method, the matrices Dk are assumed to be

5



uniformly positive definite and uniformly bounded (we say that a matrix is bounded if its eigenvalues lie
in the compact interval that does not contain zero). This is guaranteed by adding some positive definite
correction matrices to matrices Dk when necessary (i.e. we set Dk = Dk + ρI with ρ > 0). The detailed
algorithm of globally convergent LMBM-B is given in [17].

Remark. Under mild assumptions LMBM-B is proved to be globally convergent for locally Lipschitz
continuous objective functions, which are not necessarily differentiable or convex [17].

5. Numerical Experiments

We now compare the proposed globally convergent limited memory bundle method LMBM-B to the prox-
imal bundle method PBNCGC (version 2.0, [10, 21]) in a limited number of nonsmooth large-scale test
problems. We used the solver PBNCGC as a benchmark since the proximal bundle method is the most
frequently used bundle method in nonsmooth optimization. In addition, we compared the new version
LMBM-B to the older, non-globally convergent, version LMBM-B-OLD [12]. The experiments were per-
formed in a IntelR© Core

TM

2 CPU 1.80GHz and all the algorithms were implemented in Fortran77 with
double-precision arithmetic.

The solvers were tested with 10 nonsmooth academic minimization problems described in [22]∗. The
number of variables used in our experiments were 1000, 2000, and 4000. The solvers were tested with
relatively small amount of stored subgradient information. That is, the size of the bundle mξ was set to
10 for LMBM-B and LMBM-B-OLD and to 100 for PBNCGC (since the previous experiments [1, 3] have shown
that a larger bundle usually works better with PBNCGC). With both LMBM-B and LMBM-B-OLD, we used
the values m̂u = 15 and m̂c = 7 due to good results of previous experiments with the older version [12].
The final accuracy parameter ε was set to 10−5 in all the cases and, otherwise, the default parameters
of the solvers were used. In addition to the usual stopping criteria of the solvers, we terminated the
experiments if the CPU time elapsed exceeded half an hour.

The results of experiments are summarized in Tables 1, 2, and 3, where Ni and Nf denote the numbers
of iterations and function evaluations used, respectively, f denotes the value of the objective function at
termination, and the time is an average CPU time elapsed per problem and it is given in seconds (only
the accurately and successfully terminated problems were included).

In Tables 1, 2, and 3 we see the superiority of the different variants of LMBM-B when comparing the
computational times; the computation times elapsed with LMBM-B and LMBM-B-OLD were usually hundreds
of times shorter than those of PBNCGC. On the other hand, there was not a very big difference in the
computational times between the different variants of LMBM-B. Although, the globally convergent
version LMBM-B usually needed more computation time than the older one. This is due to fewer function
evaluations required with LMBM-B-OLD (see Tables 1, 2, and 3). The increased number of function
evaluations needed with LMBM-B is probably due to less accurate search direction caused by the stark
projection of subgradients. Thus, different projection possibilities need to be studied.

The proximal bundle solver PBNCGC always needed less function evaluations than the different vari-
ants of LMBM-B. However, as can be seen when comparing the computational times, each individual
iteration with PBNCGC was much more costly than that with LMBM-B or LMBM-B-OLD. Indeed, with PBNCGC

all the problems with 4000 variables but two (problems 2 and 6) were terminated because the time limit
exceeded. This also explains the inaccurate results obtained with PBNCGC (see Table 3).

The new variant LMBM-B failed to solve two of the problems (problems 1 and 2) with any number of
variables tested. These failures were quite predictable, since both of these problems are reported to be
difficult to solve with limited memory bundle method even without the bound constraints [2].

To sum up, the new solver LMBM-B did not beat up LMBM-B-OLD due to larger number of function
evaluations needed. Although in theory, the new version is globally convergent and the older version is
not, there was no significant improvement in the accuracy or robustness of the method. However, when
comparing to PBNCGC, the new solver LMBM-B was substantially faster.

∗All the problems can be downloaded from the website http://napsu.karmitsa.fi/lmbm

6



Table 1: Results for bound constrained problems with 1000 variables.

Solver LMBM-B LMBM-B-OLD PBNCGC

Problem Ni/Nf f Ni/Nf f Ni/Nf f

1 -/- fail 11346/11385 0.01 -/- fail
2 -/- fail 676/825 0.26651 18/19 8.2 · 10−6

3 286/2029 −1396.08 35/62 −1395.45 18/23 −1396.12
4 157/921 2334.75 64/86 2334.75 25/26 2334.75
5 95/632 2042.62 63/252 2042.63 25/26 2042.62
6 278/291 0.09547 526/526 0.09531 9/25 0.40523
7 293/3106 99.9000 160/694 99.9001 300/395 99.9192
8 120/648 −698.121 74/310 −698.099 35/36 −698.172
9 129/895 8.45406 55/123 8.45415 46/74 8.45407

10 142/812 147.301 63/137 147.299 22/33 147.299

Time 1.07 0.21∗ 67.48

* Problem 1 that took 71.91 sec to compute is not included in average CPU time of LMBM-B-OLD.

Table 2: Results for bound constrained problems with 2000 variables.

Solver LMBM-B LMBM-B-OLD PBNCGC

Problem Ni/Nf f Ni/Nf f Ni/Nf f

1 -/- fail -/- fail -/- fail
2 -/- fail 3375/3453 0.38118 20/22 3.0 · 10−6

3 112/644 −2793.50 36/71 −2791.41 19/24 −2793.63
4 150/749 4671.97 74/139 4671.97 22/23 4671.97
5 101/421 4087.25 74/276 4087.26 28/29 4087.25
6 517/522 0.09531 -/- fail -/- fail
7 63/427 200.717 53/91 199.979 69/82 200.251
8 138/686 −1396.05 68/164 −1396.68 31/32 −1396.93
9 86/500 16.9159 63/177 16.9068 35/55 16.9065

10 146/812 294.911 108/110 294.792 36/48 294.793

Time 1.11 0.68 540.14

Table 3: Results for bound constrained problems with 4000 variables.

Solver LMBM-B LMBM-B-OLD PBNCGC

Problem Ni/Nf f Ni/Nf f Ni/Nf f

1 -/- fail -/- fail -/- fail
2 -/- fail -/- fail 24/28 1.8 · 10−6

3 66/403 −5555.69 42/71 −5587.79 15/20 −5588.65
4 172/946 9346.40 88/126 9346.40 13/14 9346.54
5 149/686 8176.57 100/152 8176.57 13/14 8176.63
6 -/- fail -/- fail 19/38 28.5408
7 281/2369 399.900 -/- fail 14/17 404.086
8 120/521 −2794.24 123/329 −2794.39 11/12 −2784.70
9 129/639 33.8113 76/128 33.8270 13/17 35.6548

10 204/1117 589.780 95/230 589.946 13/17 593.702

Time 5.57 1.90 1562.28

7



6. Conclusions

In this paper, we have described a new variant LMBM-B of the limited memory bundle method for
bound constrained nonsmooth large-scale optimization. The preliminary numerical experiments confirm
that LMBM-B is efficient for both convex and nonconvex large-scale nonsmooth optimization problems.
With large numbers of variables it used significantly less CPU time than the proximal bundle method
tested. Moreover, the difference between the computational times of this globally convergent variant
and the previous (non convergent) version of the method was not as large as we foreboded.

A drawback of the new variant is clearly the increased number of function evaluations needed. This
is probably due to less accurate search direction caused by the stark projection of subgradients. Thus,
different projection possibilities need to be studied.

The fact that LMBM-B only generates feasible points may be essential in the case the objective
function or the subgradient values are undefined or difficult to compute if some of the constraints are
violated. Furthermore, it can be an advantage in many industrial applications, where function evaluation
may be very expensive. Since any intermediate solution can be employed, the iterations can be stopped
whenever the result is satisfactory. Due to this feasibility, the efficiency of the method, and the fact that
the objective function need not to be differentiable or convex, we expect LMBM-B to be very useful in
solving optimization problems arising in real world modeling.

Acknowledgements

I would like to thank Prof. Marko M. Mäkelä for his valuable comments. This work was financially
supported by University of Turku (Finland).

Appendix

The limited memory variable metric matrices used in our algorithm are represented in the compact
matrix form originally described in [6].

Let us denote by m̂c the user-specified maximum number of stored correction pairs (3 ≤ m̂c) and
by m̂k = min { k − 1, m̂c } the current number of stored correction pairs. Then the n × m̂k dimensional
correction matrices Sk and Uk are defined by

Sk =
[

sk−m̂k
. . . sk−1

]

and Uk =
[

uk−m̂k
. . . uk−1

]

, (20)

where the correction pairs si = yi+1 − xi and ui = ξi+1 − ξm, (i < k and m denotes the index ot the
iteration after the latest serious step) are obtained at the previous iterations.

The inverse limited memory BFGS update is defined by the formula

Dk = ϑkI +
[

Sk ϑkUk

]

[

(R−1
k )T (Ck + ϑkUT

k Uk)R−1
k −(R−1

k )T

−R−1
k 0

] [

ST
k

ϑkUT
k

]

, (21)

where Rk is an upper triangular matrix of order m̂k given by the form

(Rk)ij =

{

(sk−m̂k−1+i)
T (uk−m̂k−1+j), if i ≤ j

0, otherwise,
(22)

Ck is a diagonal matrix of order m̂k such that

Ck = diag [sT
k−m̂k

uk−m̂k
, . . . , sT

k−1uk−1], (23)

and ϑk is a positive scaling parameter.
The similar representation for the direct limited memory BFGS update can be written by

Bk =
1

ϑk

I −
[

1
ϑk

Sk Uk

]

[

1
ϑ
ST

k Sk Lk

LT
k −Ck

]

−1 [

1
ϑk

ST
k

UT
k

]

, (24)

where

Lk = ST
k Uk − Rk. (25)

8



In addition, the inverse limited memory SR1 update is defined by

Dk = ϑkI − (ϑkUk − Sk)(ϑkUT
k Uk − Rk − RT

k + Ck)−1(ϑkUk − Sk)T . (26)

and, correspondingly, the direct SR1 update is defined by

Bk =
1

ϑk

I + (Uk −
1

ϑk

Sk)(Lk + LT
k + Ck −

1

ϑk

ST
k Sk)−1(Uk −

1

ϑk

Sk)T (27)

With SR1 updates we use the value ϑk = 1 for all k.
In our proposal, the individual updates that would violate positive definiteness are skipped.

7. References

[1] M. Haarala, Large-Scale Nonsmooth Optimization: Variable Metric Bundle Method with Limited

Memory. PhD thesis, University of Jyväskylä, Department of Mathematical Information Technol-
ogy, 2004.

[2] M. Haarala, K. Miettinen, and M. M. Mäkelä, New limited memory bundle method for large-scale
nonsmooth optimization. Optimization Methods and Software, 2004, 19(6), 673–692.

[3] N. Haarala, K. Miettinen, and M. M. Mäkelä. Globally convergent limited memory bundle method
for large-scale nonsmooth optimization. Mathematical Programming, 2007, 109(1), 181–205.

[4] L. Lukšan and J. Vlček. Globally convergent variable metric method for convex nonsmooth uncon-
strained minimization. Journal of Optimization Theory and Applications, 1999, 102(3), 593–613.

[5] J. Vlček and L. Lukšan. Globally convergent variable metric method for nonconvex nondifferentiable
unconstrained minimization. Journal of Optimization Theory and Applications, 2001, 111(2), 407–
430.

[6] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-Newton matrices and their
use in limited memory methods. Mathematical Programming, 1994, 63, 129–156.

[7] J. Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of Computation,
1980, 35(151), 773–782.

[8] F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley-Interscience, New York, 1983.

[9] K. C. Kiwiel. Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics
1133. Springer-Verlag, Berlin, 1985.

[10] M. M. Mäkelä and P. Neittaanmäki. Nonsmooth Optimization: Analysis and Algorithms with

Applications to Optimal Control. World Scientific Publishing Co., Singapore, 1992.

[11] H. Schramm and J. Zowe. A version of the bundle idea for minimizing a nonsmooth function:
Conceptual idea, convergence analysis, numerical results. SIAM Journal on Optimization, 1992, 2
(1), 121–152.

[12] M. Haarala and M. M. Mäkelä. Limited memory bundle algorithm for large bound constrained
nonsmooth minimization problems. Reports of the Department of Mathematical Information Tech-
nology, Series B. Scientific Computing, B. 1/2006 University of Jyväskylä, Jyväskylä, 2006.

[13] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific Computing, 1995, 16(5), 1190–1208.

[14] A. R. Conn, N. I. M. Gould, and P. L. Toint. Global convergence of a class of trust region algorithms
for optimization with simple bounds. SIAM Journal on Numerical Analysis, 1988, 25(2), 433–460.

9



[15] E. R. Panier. An active set method for solving linearly constrained nonsmooth optimization prob-
lems. Mathematical Programming, 1987, 37, 269–292.

[16] A. R. Conn, N. I. M. Gould, and P. L. Toint. Testing a class of methods for solving minimization
problems with simple bounds on the variables. Mathematics of Computation, 1988, 50(182), 399–
430.

[17] N. Karmitsa and M. M. Mäkelä. Globally convergent limited memory bundle algorithm for non-
differentiable programming subject to box constraints. TUCS Technical Report, No. 882, Turku
Centre for Computer Science, Turku, 2008.

[18] C. Lemaréchal, J.-J. Strodiot, and A. Bihain. On a bundle algorithm for nonsmooth optimization.
In O. L. Mangasarian, R. R. Mayer, and S. M. Robinson, editors, Nonlinear Programming, pages
285–281. Academic Press, New York, 1981.

[19] R. Mifflin. A modification and an extension of Lemaréchal’s algorithm for nonsmooth minimization.
Matematical Programming Study, 1982, 17, 77–90.

[20] R. Fletcher. Practical Methods of Optimization. John Wiley and Sons, Chichester, 2nd edition,
1987.

[21] M. M. Mäkelä. Multiobjective proximal bundle method for nonconvex nonsmooth optimization:
Fortran subroutine MPBNGC 2.0. Reports of the Department of Mathematical Information Tech-
nology, Series B. Scientific Computing, B. 13/2003 University of Jyväskylä, Jyväskylä, 2003.

[22] N. Karmitsa. Test problems for large-scale nonsmooth minimization. Reports of the Department
of Mathematical Information Technology, Series B. Scientific Computing, B. 4/2007 University of
Jyväskylä, Jyväskylä, 2007.

10


