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Abstract

The aim of this paper is to propose a new multiple subgradiestent bundle
method for solving unconstrained convex nonsmooth mykicive optimization

problems. Contrary to many existing multiobjective optation methods, our
method treats the objective functions as they are withoyileying any scalar-
ization. The main idea is to find descent directions for ewssjective function

separately and then form a common descent direction foy @lgective function.

In addition, we prove that the method is convergent and isfimdakly Pareto op-
timal solutions. Finally, some numerical experiments anestdered.
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1 Introduction

Multiobjective nature arises in many practical applicasioThere are several con-
flicting objectives to be optimized and the aim is to find a coonpuise between
these different goals being as good as possible for all thectbes at the same
time. The compromise is optimal if we cannot improve any otiye without
deteriorating some other. The problems of this kind areedathultiobjective
optimization problems and these problems exist in manysatfea example, in
engineering [23], economics [26] and mechanics [24].

The most of the existing multiobjective optimization meds@onvert the mul-
tiple objectives to the single-objective problem and apmyne single-objective
method to solve it. This process is called a scalarizatiea ésg. [7, 21]). In this
paper, instead of the scalarization, we are focusing oretiéseethods employing
the objectives as they are. The method is said to be descaneviery iteration
it moves to the direction where the values of all objectivepriove and the new
iteration points produced give better values for objectivections. For differen-
tiable functions there are several methods of this typerdestin literature e.g.
[6, 8, 9, 25].

In addition to multiobjective characteristic, many of theallife problems
have also nonsmooth nature meaning that the functions dreetessarily dif-
ferentiable in classical sense. There are several reasorise nonsmoothness
of objective functions [2, 17]: first, an objective functidself can be nondif-
ferentiable as are, for example, piecewise linear tax nsotkekéconomics [14];
second, some technical constraints may cause a honsmquehaknce between
the variables and the functions even the objective funstare continuously dif-
ferentiable as in, for instance, obstacle problems in ogitishape design [10];
third, some optimization methods for a constrained probieay lead to a nons-
mooth problem as, for example, the exact penalty functiothoee[2]; and fourth,
the problem may be analytically smooth but numerically eHé&e a nonsmooth
problem. Since nonsmooth objective functions are not ihffeable we cannot
utilize gradient-based methods to solve the problems.

Bundle methods [2, 11, 12, 13, 17, 20] are considered as tist efficient
way to solve nonsmooth single-objective optimization peois. The ideain these
methods is to approximate the subdifferential (i.e. a sefenferalized gradients,
the so-called subgradients [4]) of the objective functiathva bundle including
information from the neighborhood of the iteration pointbelonly assumptions
needed are that one arbitrary subgradient and the values aflijective function
can be evaluated at every point. In order to improve a gerenadlle method
for single-objective optimization to a more efficient one ttlea of the proximal
bundle method [13, 20] can be utilized. In this method a winghparameter
has been added to the stabilizing term. The stabilizing teakes sure that the
approximation of the function is close enough to the iteragpoint and it also
guarantees the existences of the search directions.
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As noted before, there exists various methods either forotim@.e. con-
tinuously differentiable) multiobjective optimizatiorr dor nonsmooth single-
objective optimization but only few methods are designednfensmooth mul-
tiobjective optimization. Since many multiobjective pledms has nonsmooth ob-
jectives, we study here nonsmooth multiobjective optimigra We are focusing
on descent methods employing the objectives as they aratetature methods
of this kind are described e.g. in [11, 19, 22, 27] where thes¢hods utilize
the basic bundle idea. This type of the methods may be appbeéxample, in
interactive methods proposed in [22, 25].

In this paper we propose a new multiple subgradient deseerdlé method
(MSGDB) for convex nonsmooth multiobjective optimizatigmoblems. MSGDB
generalizes the ideas of smooth multiple-gradient desadgotithm [5, 6] which,
in its turn, extends the well-known steepest descent mdtirade multiobjective
problems. The nonsmoothness of the objectives is takermotount by using the
proximal bundle idea. That is, in MSGDB, all the objectivadtions are first lin-
earized separately and the proximal bundle approach istoded subgradients
giving descent directions for each objective function.eifthat a convex hull of
the subgradients is formed and a minimum norm element isilcadd to obtain a
common descent direction for all the objective functions.

We also recall the basic idea of the multiobjective proxifahdle method
(MPB) [19, 22] which is used as a reference method. In the migalesxperi-
ments, MSGDB is compared with MPB. Both of these methods f@amommon
descent direction for every objective function and they lzased on the proxi-
mal bundle approach. However, they utilize the idea of thexipnal bundle in
different way. MPB is a generalization of the proximal buendiethod utilizing
an improvement function taking all the objectives into agtdoat the same time.
The improvement function is then linearized in order to obtae descent search
direction [19, 22].

The paper is organized as follows. In Section 2, we recallesbasic re-
sults from multiobjective and nonsmooth optimization. téet3 is devoted to the
methods and we describe the new MSGDB method and for the $aenpari-
son we recall the basic ideas of MPB. Some numerical expetsrage given in
Section 4. In conclusion, Section 5, we give some final resark

2 Preliminaries

Let us consider an unconstrained optimization problem efohm

min {fl(m)7>fm(m)} (l)

s.t. x€R",

where "min” means that all the objective functions are mizea simultaneously.
The objective functions; : R” — R, i = 1,...,m are assumed to be convex
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but not necessarily differentiable. Since the objectivecfions are convex they
are known to be alstmcally Lipschitz continuouf2]. The functionf; is locally
Lipschitz continuous at the poiat € R™ if there existK’ > 0 ande > 0 such that

|fi(y) — fi(z)| < K|y — z| forall y, z € B(zx;¢),

whereB(x; ) is an open ball with center and radiug.

At first we recall some basic results from multiobjective amathsmooth opti-
mization. For more details we refer to [2, 4, 7, 20, 21]. Niotatc < y is used if
x; <y forallie {l,...,n}andx < yif z; <y forallie {i,...,n}.

A solutionx* € R™ of the problem (1) is calle@areto optimalif there does
not exist another point € R" such thatf;(x) < fi(z*) foralli =1,...,m and
fi(x) < f;(x*) for at least one index € {1, ..., m}. This definition means that
no objective can be improved without impairing some othgedtve at the same
time. Usually there exist several Pareto optimal solutlmaiag all mathematically
equally good.

A generalized concept, calledeak Pareto optimalityis also possible to de-
fine. A solutionz* € R"™ of the problem (1) is weakly Pareto optimal if there does
not exist another point € R™ such thatf;(z) < fi(z*)foralli =1,...,m. This
means that there does not exist any other point such thabjalttive functionsf;
have better values. Clearly every Pareto optimal solusoalso weakly Pareto
optimal.

Nonsmooth functions do not have gradient at every point bhod instead of
classical gradient a generalized gradient called subgnadieed to be utilized. If
function f; : R — R is convex, then theubdifferentialof the functionf; at the
pointx is a set

Ofi(x) = {& eR" | fi(y) > fi(x) + & (y — ) forally e R"} .

A vector§, € 0f;(x) is called asubgradientof the functionf; at the pointx.
Later we assume that at least one arbitrary subgradienteanvdluated at every
point for every objective function.

The subgradient of a differentiable convex function is ueignd equals to its
gradient as stated in the following theorem.

Theorem 2.1.[2, 20] Let functionf; : R® — R be convex and differentiable at
the pointz. Then

Ofi(x) ={V/fi(x)}.

The optimization method is called descent if at every iterait produces a
better solution for the problem (1). In order to find this be#olution the concept
of a descent direction is needed. The direcitbre R” is said to be alescent
directionfor function f; : R™ — R atx if there exists > 0 such that

filx +td) < f;(z) forall t € (0,¢].

The next theorem shows how descent directions can be found.
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Theorem 2.2.[2, 20] Let functionf; : R™ — R be convex. The directiosh € R"
is a descent direction fof; at the pointx if

¢'d <0 forall ¢ € Of;(x).

A well-known necessary and sufficient condition for globadimality in con-
vex single-objective case is the following

Theorem 2.3.[2, 20] A convex functiorf; : R® — R attains its global minimum
at the pointz if and only if

The following theorem is the multiobjective counterparnt Tthheorem 2.3 giv-
ing us necessary and sufficient conditions for (weak) Pametionality.

Theorem 2.4.[21] Consider the problen(il). A necessary condition for a point
x to be a (weakly) Pareto optimal solution of the problémis that there exist
multipliersA € R™, A > 0 and X # 0 such that

=1

The above mentioned condition is also sufficient for wealktBawptimality and
for Pareto optimality ifA > 0.

3 Methods

In this section, two different descent methods for multalive optimization uti-
lizing the proximal bundle idea are described. The first sremew MSGDB for
unconstrained convex multiobjective optimization proldée In addition, we re-
call ideas of MPB and use it as a reference method in order ke m@amparisons
between these two methods.

3.1 Multiple subgradient descent bundle method

MSGDB extends the ideas of the multiple-gradient desceyursthm [5, 6]. This
method, in its turn, is a generalization of the classicasst descent method for
smooth multiobjective optimization. In the multiple-gret descent algorithm
the direction of the negative gradient is utilized. Thisediton is known to be a
descent direction for a smooth function [3, 20]. By knowihg gradients giving
descent directions for every objective separately, a cohud of these gradients
is formulated. Then the minimum norm element of that conudkdan be found.
The negative direction of this minimum norm element give®mmon descent
direction for all the objective functions.
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In the following, we assume that the objective functionsr@wasmooth and
thus gradients cannot be employed. Instead of gradientstilize subgradients in
MSGDB. However, the gradients cannot be just replaced vabigsadients since
there is no guarantee that the opposite direction of anrarpisubgradient would
be a descent direction [20]. If the whole subdifferentiatiad objective function
was known, the steepest descent direction could be catdcliatt this is, in most
cases, too demanding requirement in practice. That is wdpudindle approach is
utilized in order to find a descent direction.

The basic idea behind the bundle method is to approximateioée subdif-
ferential of the objective function by gathering infornaatifrom the neighborhood
of the iteration point into the bundle. Thus only one arbitraubgradient from
the subdifferential and the value of the function at eactaiten point need to
be evaluated. We refer to [2, 11, 12, 13, 17, 20] for more tetdbout bundle
methods.

Next we present how to calculate descent directions for@imiohual objective
fi»i=1,...,m. These calculations are performed for every objectiverseply.
Consider an iteration point,, at iterationk and some auxiliary pointg, ;, j € Ji
from past iterations, wherg, ;, is a nonempty subset dfi, ..., k}. In addition,
some arbitrary subgradien{s,; € 9df;(y,;) fori = 1,...,m andj € J;; are
supposed to be known.

The following piecewise linear model also callectatting plane modeis
formed to approximate the functiof

) = jrg%}}i {fi(xs) + EZT](:B —xy) — ozfij} foralle=1,...,m, (2)

where the linearization err@rﬁﬁj is defined by

af ;= filzr) — fi(y,,) — & (me — y, ;) forall j € Jy. )

The search directiod, ;. can then be calculated from formula

A 1
d; , = argmin {ff(a:k +d;) + §uzk ||dl||2} foralli=1,...,m, 4)

d;eR"

whereu; , is a positive weighting parameter. The tetm |d;||* is a stabilizing
term guaranteeing the existence and the uniqueness of lilte@scand keeping
the approximation local enough.

Itis possible to rewrite the nonsmooth problem (4) for edglective functions
fi in the following smooth form

1 2
- L 2w ds 5
g min v g di (5)
s. t. — C(f,j + 53:de < for all J € Ji,k-
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The problem (5) can be made easier and instead of the problewe(can solve
its quadratic dual problem

1
. k
min —— g N &+ E N O
NER  2u g Z’]E” BT

JE€Jik JE€Jik

s. t. Z /\i,j =1

JE€Jik

)\i,j > 0.

A unique solution of the problem (5) is then of the form [20]

di=— ! Z Aii&i

u.

WK e T

; > A€l + D )\z‘,j%,j>-
v jGJi_’k jEJi,k

Vil = —<
Uy,
Next a new auxiliary poiny, , ., = xx+d;; and the function valug;(y, ;.. ,)
is calculated. The procedure can be stopped and;set d; ;. if

filWipi1) < fil@®r) +mpvig, (6)

wherem; € (0,1) is a line search parameter. Note that has the following
form [20]

Uik = fik(yz‘,k-i-l) — fi(z)

being a predicted descent of the functifjrat the pointr,. This implies that the
obtained function value at the new iteration point is sigaifitly better than the
function value at the previous iteration point. In bundletmoels, if the condition
(6) holds, a new iteration point,  ; is calculated and this step is callederious
step If the condition (6) does not hold we perforrmall step where the model
will be improved by adding new information to the bundle. §is done by updat-
ing the bundle such that a new index is added to the/set; = J;, U {k + 1}.
In addition, the subgradie; ;, ., € Jfi(y, ), the trial pointy, , ., and the
function valuef;(y; ,.,) are added to the bundle. The iteration point is updated
by settingz,1 = x;. After that, a new value for the directia#, ;., can be
calculated.

Null steps are continued until the condition (6) is satistéed the sufficient
descent is reached. It can be proved that the number of epl & finite until the
sufficient descent is reached [12].

According to Theorem 5.2.8 in [20] for the solutiah;, of the problem (4)
holds that-d; , € dfi(x;) and notation

dix = =&, Whereg;, € dfi(xy)
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can be used. Theorem 5.2.8 in [20] also shows that the drectbtained is
descent for the estimated functigfi. The following theorem shows that the di-
rection obtained is descent also for the original objedtivestion f;.

Theorem 3.1.[20] Let a functionf; : R™ — R be locally Lipschitz continuous at
the pointz. The directiond € R" is a descent direction for the functigiat the
pointx if the directiond is a descent direction for the estimated functjpat the
point .

Above we have shown how to calculate descent directionsrfanaividual
objective functionsf;, i = 1,..., m. Next the calculation of a common descent
direction for all the objective functions is considered.

From Theorem 2.4 the following definition of Pareto statiityas obtained
to get a generalization of the Pareto optimality.

Definition 3.2. A pointx is said to bePareto stationaryf there exist subgradients
&, € 0fi(x) and multipliers\; > Oforalli =1,...,m, > ", A\; = 1 such that

Note that due to Theorem 2.4 in the convex case Pareto statypaquals to weak
Pareto optimality.

In [6] Lemma 2.1 and Theorem 2.2 were proven to guaranteautictibnality
of the multiple-gradient descent algorithm. Same kind sfilis can be formulated
also for MSGDB as will be shown in Lemma 3.3 and Theorem 3.4.

Lemma 3.3. Letd;, = —&; with &, € 0f;(x) be a descent direction fof; at the
pointx for all i« = 1,...,m. LetC be a set of convex combinations of corre-
sponding subgradients, that is,

C=conf& |i=1,...,m}, (7)

whereconv denotes the convex hull of a set. Then there exists a uniguerve
p* = argmin,,. [|p|| such that

p'p* > pTp* = |p*||” forall p € C. (8)

Proof. If 0 € C, thenitis a minimum norm element,is Pareto stationary and the
statement (8) is trivially valid. Assume thatz C'. SinceC' is a nonempty, closed
and convex set, there exists a unique minimum norm elepiert C' according
to the closest point theorem [3].

Let a vectorp be an arbitrary element af' and setr = p — p*. Due to
convexity ofC' we have

Ar+p =Ap+(1—-Np*eC forall Xe0,1].



Sincep* is the minimum norm element, we hajygr + p*|| > ||p*|| implying
IAr +p*|I* = |p°[I* = 227" p* + N*r"r > 0.
Since\ can be arbitrary small we get
0<rlp* = (p— p*)Tp* —p'p* — pTp*
implying the statement (8). O

Combining the information from Definition 3.2 and Lemma 318 following
theorem is obtained.

Theorem 3.4.Letd; = —&; with &, € 0f;(x) be a descent direction fof; at the
pointx foralli = 1,...,m. LetC be as in(7) and C*° be a set of strictly convex
combinations of subgradiengs, in other words

C° =intconv¢; |i=1,...,m}.

If a vectord” is of formd™ = —p*, wherep” = argmin,. [|p||, then either we
have

1. d* = 0 and the pointe is Pareto stationary.
or

2. d* # 0 and the vectorl” is a common descent direction for every objective
function. Moreover, ip* € C° thenp”p* = ||p*||* forall p € C.

Proof. Consider the first case. Now the vected” = p* = > ", A& = 0,
Af > 0foralli =1,...,mand) " A\; = 1. Thus the pointc is Pareto
stationary.

Consider then the second case. Now the veeldt = p* = > " A& # 0
and thus the point is not Pareto stationary. The vectpt is assumed to be
the minimum norm element of the s€t Since alsc€; < C for all i we have
&Tp* > |p*||? > 0 according to Lemma 3.3 and thus for the directiBrit holds
&1 (d) = —¢"p* < 0. Then according to Theorem 2.2 the directidhis a
descent direction for all functiong with: =1,..., m.

Next we prove that if the vectgr* € C° thenp”p* = ||p*||* forall p € C
offormp = > &, > 0foralli =1,...,mand> ", o = 1. With
assumptions of the theorem, the elemghis a solution of the problem

min pr 9)

m
S. t. ZOZZ' = 1.
i=1
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Thus by using a vectar € R™ the Lagrangian of (9) obtained is

m

L, \) =p"p+ A _ai — 1)

=1
and the vectotx satisfies the following optimality conditions in optimum

dLia, \') =0 forall 1, andidL(a ) =0.

da; d\

The first condition implies that for every indeéxhe following holds:

d(p"p)

A=0. 10
da, A0 (10)

Whenp = >"" | af&;, from the equation (10) it follows

dP"p) rdp\T _ er .
e~ 2ga) p=2E = 2

and this equation implies thgt” p* = —g whenq; > 0 for everyi.
Consider an arbitrary elemepte C such thaip = >~ | 1;:&;, whereu; > 0
foralliand) ", u; = 1. Now

D)
_ T % A

p'p Zuzé’ ;MZZ

On the other hand, we can chogse- p* and thus
Ip*||* = p"p* =p"p" = —
[

The main result of Theorem 3.4 is that the directibn= —p* = — > " \i&F

zlzz

is a common descent direction and it can be calculated byngpllie problem
m 2
Z A€}

/\ 20, forall 7

(11)

which has a unique solution since the objective functioridj (s strictly convex.
We have now presented a method to calculate a common descatiash for
all the objective functions. A stepsizecan then be calculated as is done in the
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multiple-gradient descent algorithm [6] by formulatingh@itionsg; : R — R for
alli=1,...,mofthe form

We apply some line search method in order to find interf@ls;], where the
functionsg; are decreasing. By combining this information, an intewhére all
the functionsy; are decreasing can be obtained. The end point of this interva
the stepsize.

Now we can describe an algorithm for MSGDB. The flow chart @f éiftgo-
rithm is presented in Figure 1.

Algorithm 1. Multiple subgradient descent bundle method (MSGDB)

Step 1: [(nitialization) Select the starting point,, the line search parameter
my € (0,3) and the stopping parameter> 0. Set an outer iteration
index! = 1.

Step 2: Direction finding Do the following steps for all = 1, ..., m to calculate
directionsd,.

Step A: (nitialization) Select the weighting parameter;. Set auxiliary point
y;, = x;and aset;; = {1}. Setalso an inner iteration indéx= 1.

Step B: Direction finding Calculate a directiod; ;, from formula (4) and set
Yiri1 = T + dip. If the condition (6) holds, then set; = d; ;.
Otherwise go to step C.

Step C: Updatg SetJ;x1 = JixU{k + 1}, calculateg; . ., € 0fi(y; 1)
and update; ;1. Go to step B.

Step 3: Common descent direction find)n@alculate a minimum norm elemepit
of the set”' (see (7)) by solving the problem (11). Skt= —p*.

Step 4: Gtopping criteriopIf ||d,|| < ¢, then stop.

Step 5: Line search Calculate a stepsizé being the largest strictly positive
real number for which all functiong; (see (12)) are decreasing. Set
x;.1 = x; + td; and go to step 2.

In practice the size of the bundle need to be limited. Theesawiay to do this
is to choose some maximal size for the bundle, for exaniple = n + 3. The
setJ; x+1 is updated as in Step C|iff; x| < Jyae AN if|J; | = Jnar @ SEL

Ji,k—i—l - Ji,k: U {k + ]-} \ {k - Jmam} (13)

is used. Another possible limiting strategy is the subgmataggregation strategy
[20]. In Step C, also the parametey;; is updated and this can be done, for
example with a weight updating algorithm presented in [13].
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Calculate d; foralli=1,....m

Initialization |
I

. %
Solve prob-
lem (4) and Jo—

calculate y; ..,

Initialization
Calculate d; for
all f=Twssiomm Does condition

(6) hold?

No | Update J; p1

and u; g+1

Calculate the
common descent
direction d;

Set d; = d;

Is Yes .
il < &2 | BEOF
No

Calculate
the stepsize t

Calculate the
new point

Ty = T +td;

Figure 1: Flow chart of MSGDB
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Next we prove that the solution generated by MSGDB is Patatmsary. As
mentioned before, in case of convex functions Pareto siatity is equal to weak
Pareto optimality.

Theorem 3.5. Let us consider the probleifi). If MSGDB stops with a finite
number of iterations, then the solution is Pareto statigna®n the other hand,
any accumulation point of the infinite sequence of solutgamerated by MSGDB
is Pareto stationary.

Proof. Assume that Algorithm 1 stops with a finite number of iterai@nd the
stopping parameter is selected to be zero. Theje,|| = 0 and thusd, = 0.
According to Theorem 3.4 the solution is Pareto stationary.

Suppose then that Algorithm 1 generates the infinite segquehsolutions
{x;} and z* is the accumulation point of this sequence. Then there £xaist
convergent subsequenée;. } with limit point =*. Therefore it is known that
€1, € Ofi(x,,) by Algorithm 1. Notate the accumulation point of the seqeenc
{&:,.} by &;. This accumulation point exists since the functjrns locally Lip-
schitz continuous. Thus, there exists an indesuch that for all indexes > s
the pointa;, € B(x*,9) and|f;(x;,) — fi(z*)| < K|z, — =*||, whereK; is
the Lipschitz constant of;. By Theorem 2.1.5 in [209f;(x;,) C B(0, K;) and
thus the sequend;_ is bounded implying that the accumulation point exists. In
addition, according to Theorem 2.1.5 in [20] we hgye= Of;(x*).

Let p* be a minimum norm element of the convex hull of subgradients
i.e.p* = argmincon{||&||},7 = 1,...,m. The vectorp* is also the accumula-
tion point of the sequencep, }, wherep, is of form p, = argmin conV{[|£;, ||},
sinceg; is an accumulation point &, . Thusd® = —p* is the common descent
direction calculated at the point: according to Theorem 3.4.

If d* = 0, then the accumulation poiat* is Pareto stationary according to
Theorem 3.4. Let nowd® # 0 and assume that there exists sequenaeith
accumulation point*. Now there exists an indexsuch that for all > [ we have

1 ,
§||t*d*|| being lower bound fofit;d;|| and thus

o0 o0 1 i} i
> lltdil =) Sl = co.
1=l =i

Now we can conclude that* cannot be an accumulation point implying that the
assumptiord® # 0 does not hold. Thus the accumulation point of the infinite
sequence of solutions is Pareto stationary.

O
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3.2 Multiobjective proximal bundle method

Next we recall ideas of the multiobjective proximal bundlethod [19, 22] which
is a generalization of a single-objective proximal bundktmod [13, 20]. It com-
bines the ideas of the proximal bundle and the multiobjediivearization tech-
nique [27].

In MSGDB the problem (1) was approached by calculating destieections
for every objective function separately by utilizing thenkile idea and then by
combining this information, a common descent direction e@scluded. In MPB
the bundle idea is also used but in a different way. A commatelat search
direction for all the objectives is formed straight with dfelient linearization
technique. This linearization technique is based on [1], 27

At first we introduce a concept of improvement function ggvantool to han-
dle several objectives simultaneously. In unconstrairesse ¢he improvement
function 4 : R” x R™ — R is defined by

H(x,y) = max {fi(x) - fi(y)}. (14)

According to [22] the problem (1) attains a weakly Paretaropt solution at
the pointz* if and only if

x* = argmin H(x, ™).
xeR"

Thus at iterationk we are looking for a directiod,, which is a solution of the
problem

min  H(xy +d, xy) (15)
s.t. deR"

The problem (15) can be approximated by defining a convexepiise linear
approximation to improvement function (14). This approatian can be defined

by
(@) = max {J(@) - fi(@) } .

i=1,....,m

where the functionf; is the same cutting plane model than in (2). Hence an
approximation for the problem (15) is obtained and a seairgttibn can be cal-
culated by solving the problem

- 1
d;, = argmin {Hk(a:k +d) + zug HdH2} , (16)

deRn 2
whereu;, > 0is a weighting parameter as in (4). This nonsmooth problenatso
be written as smooth quadratic problem like (5) for MSGDB #mel following
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problem

1
min v+ 5 Uk |d||? (17)

s.t. —af,+&.d<v, foralli=1,...,m, forallje J,

where the linearization erroy’f is defined as in (3). The difference between
problems (5) and (17) is that i in the problem (5) there exiastm@ints only for the
current value ot and in the problem (17) there exist constraints for evergxid
Likewise the problem (5), the problem (17) can also be dedlip make it easier
to solve.

In MSGDB, the stepsize was the largest positive number wathall the ob-
jective functions are decreasing. In MBP an another algorjtcalled two-point
line search strategy, is utilized to calculate stepsize dim of the two-point line
search strategy is to find a stepsize ¢, < 1 such thatd (x. + t,dy, ;) is min-
imal whenz;, +t,d;, € R™. This stepsize is produced by the line search algorithm
in [20] (pp. 126-130).

The general description of the algorithm of MPB is given beldHere the
weight updating algorithm presented in [13] is used.

Algorithm 2. Multiobjective proximal bundle method (MPB)

Step 1: [(nitialization) Select the starting point,, the final accuracy tolerance
e > 0, the weightu; and line search parameters. Set an iteration index
k=1.

Step 2: Direction finding Calculate the search directialy from the problem (16).
Step 3: Gtopping criteriof Stop, if stopping criteria-Sv;, < ¢ is met.

Step 4: [Line search Calculate a stepsizg by using two-point line search strategy
and calculate the new point,; and the trial poiny, ;.

Step 5: Updatg Add more information to the bundle by evaluating
€1 € fi(yir,) and adding a new index + 1 to the setJ, to
improve the approximation. Update the weight parameter. Go to step
2.

The solutions of MPB are weakly Pareto optimal as we see ingketheorem.

Theorem 3.6.[19] Let us consider the probled). If MPB stops with a finite
number of iterations, then the solution is weakly Paretdaropt. On the other
hand, any accumulation point of the infinite sequence oftewis generated by
MPB is weakly Pareto optimal.

14



4 Computational experiments

In this section, we numerically compare the methods desdrib Section 3. At
first we compare the search directions generated by the oheth@rder to notice
that the search directions obtained with different methavdsnot necessarily the
same direction. After that, we describe the implementatmiithe methods and
give some computational examples and analyze the results.

4.1 Comparing search directions

At first we consider two simple examples where we calculaesdarch directions
which we obtain at the first iteration round. One search tiwads calculated
with MSGDB and one with MPB. We apply two different types of iglging
parametersy, one withu, = 2u;_;, whereu; = 1 and the other withy, = 1 for
all k. After that, we calculate stepsizes. In these examplesdtid®ed.l we use
the exact line search.

Both example problems are of form

{fi(), fo(x)}

x € R2

min
s. t.

(18)

In the first problem the convex objective functions in theljpeon (18) are

fi(x) =max {x% + (29 — 1)2, (21 + 1)2}
fo(x) =max {221 + 225, 2] + 23}

and the function values at the starting paint = (0,2)” are f,(x;) = 1 and
fo(x1) = 4. We get the results shown in Table 1.

Table 1: The first example

up = 2up_1 up =1
MSGDB MPB MSGDB MPB
(0.5000, 0.5000) | (0.3824,0.5294) | (0.4000,0.8000) | (0.4000,0.8000)
t 1.0000 1.0064 1.1335 1.1335
x2 | (—0.5000,0.5000) |(—0.3848,0.5294) | (—0.4534,1.0932) | (—0.4534, 1.0932)
fi(x2) 0.5000 0.3785 0.2988 0.2988
fa(x2) 2.3125 0.2923 1.2796 1.2796

In the second problem the convex objective functions in tioblem (18) are

fi(x) =max {(z1 — 2)* + (22 + 2)%, 27 + 82}
fo(x) =max {53:1 + x9, 22 + x%}
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Table 2: The second example

U = 2Ug_1 up =1
MSGDB MPB MSGDB MPB
(2.0558,3.0107) |(0.4122,0.1765) | (1.9527,2.9901) | (1.8459,1.5986)
t 0.6077 1.4612 0.6220 0.7628
xo |(—0.2493,0.1704) | (0.3977,1.7421) | (—0.2146, 0.1402) | (—0.4081,0.7806)
fi1(zx2) 9.7700 16.5700 9.4849 13.5307
fa(x2) 0.2326 3.7306 0.0657 0.7759

and the function values at the starting paint = (1,2)” are f,(x;) = 17 and
fa(x2) = 7. We get the results shown in Table 2.

From these two examples we can notice that with MSGDB and MERlav
not necessarily obtain the same search directions. Form@raim Table 1 we
have two cases with different weighting parameters. In tist fiase directions
are different and in the second case we obtain the sameidirect

In addition we cannot say which one is better way to calcudatections. As
we see, in the first case of the first example the directionutatied with MPB
gives a better point than the direction calculated with MBGIh this case, the
better point refers to the point where both objective fumtdif; and f, obtain
smaller value. However in both cases of the second exampléDESgives a
better point than MPB.

Thus based on the way to calculate the search direction weotaay that one
method is always better than another.

4.2 Implementation and numerical results

In numerical experiments, we have used single-objectivereo test problems
CB3, DEM, QL, LQ, Mifflin1 and Wolfe described in [16] and combd these
functions in order to obtain twenty multiobjective problenThe used combina-
tions are described in Table 3. All our test problems are mawth and convex.
The dimension of all test problems is two. In the first 15 peof$ we have two
objectives and the last five problems have three objectives.

We have used the implementation of MPB described in [18],revh@o-point
line search algorithm is employed. In MSGDB we apply Armipeé rule [1] as
the line search due to its simplicity. Both the methods aggemented in Fortran.
To make the methods more comparable we have used the sanratguadlver
described in [15] with both methods. In order to update theglateng parameter
u, the weight updating algorithm described in [13] is used. dthomethods the
size of the bundle is bounded by using the set (13) and the wld,,,... is chosen
to ben + 3. In following we consider one test problem closer and atiet tve
analyze the results of several tests.
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Table 3: Test problems

No.|Problems No.|Problems

1. |CB3 & DEM 11.| QL & Mifflin1

2. |CB3&QL 12.|QL & Wolfe

3. |[CB3&LQ 13.|LQ & Mifflinl

4. |CB3 & Mifflinl | 14.|LQ & Wolfe

5. |CB3 & Wolfe 15. | Mifflinl & Wolfe

6. |DEM & QL 16.|CB3, DEM & QL

7. DEM & LQ 17.|LQ, Mifflinl & Wolfe
8. |DEM & Mifflinl | 18.|DEM, QL & LQ

9. |DEM & Wolfe |19.|CB3, Mifflinl1 & Wolfe
10.|QL & LQ 20.|DEM, LQ & Wolfe

Let us take a closer look at the test problem number 3. In ttedtim objec-
tive functions are combined from test problems CB3 and LQ.[TIBus objective
functions of the problem (18) are now

fi(x) =max{z] + 23, (2 — 21)* + (2 — 12)?, 2™}

fo(x) =max{—xz; — 29, —11 — x5 + :cf + x% —1}.

The starting point is chosen to bey, = (2,2)7, the line search parameter
my, = 0.25 and the stopping parameter= 10~°. The performance of MSGDB is
described in Table 4, where current points and the functadues at those points
are listed at every iteration. As we see, the value of botkaihje functions de-
creases at every iteration.

Table 4: The performance of the MSGDB algorithm with testypea 3

Iteration x f(x)

1 (2,2 (20, 3)
2 [(1.07040, 2.19346)(6.14850, 1.69316
3  [(1.01611, 1.22948)2.57763, -0.70149
4 1(0.94961, 1.04304)2.19586, -1.00295
5 [(0.95189, 0.98783)2.12303, -1.05782

~— ~—

~

The performance of MSGDB in this test problem is also illatstd in Fig-
ure 2. In this figure, gray contours correspond the contolitiseofirst objective
function while dashed gray contours correspond the costofithe second one.
The optimal points of the first and second objective are nthrkeh black and
white square, respectively. The value of the function atap&mal point of the
first objective isf = (2,—1) and at the optimal point of the second objective
f = (3.34,—1.41). The black point represents the solutisp obtained with
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MSGDB and circles are previous iteration points. Now we caatbat the solu-

tion obtained is closer to the optimal point of the first obijgxfunction than the
optimal point of the second objective function.
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Figure 2: The performance of the algorithm in decision sgaceestproblem 3

In Figures 3 and 4, the situation, where the algorithm is mmtimes with
different starting points is illustrated. In Figure 3, wevbaolutions obtained in
the decision space marked with black points. Also four pafiiee algorithm are
illustrated with black dashed lines in order to demonstita¢eperformance of the
algorithm. In Figure 4, these solutions are depicted in thjeaive space. Again,
in Figures 3 and 4, squares represent single-objectivenappoints.
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Figure 3: The solutions obtained in decision space for tedilpm 3 with several

starting points
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Figure 4: The solutions obtained in objective space forgestlem 3 with several
starting points

From Figures 3 and 4 we can observe that the solution obtdiegehds on the
starting point. With different starting points we can gexterdifferent (weakly)
Pareto optimal solutions and obtain an approximation oP@eto optimal set.

In Table 5 the optimal function values for all the testproideobtained with
MSGDB and MPB are described. The same starting points ackarsgethe stop-
ping criteria are set such that= 10~° in both methods. In addition, the number
of iterations and function calls are listed. In the implema¢ion of MPB objective
functions are called at the same time and in the implememafiMSGDB all ob-
jective functions are called separately. Thus there aeetfunction call columns
(F1, F2 and F3) for MSGDB and only one column (F) for MPB in Eabl

From results in Table 5 we can conclude that the number ddtitars are
approximately the same order since according to the rethdtaverage iterations
needed for MSGDB is 9.00 and for MPB is 11.20. Even the numbigzm@tions is
slightly smaller with MSGDB, the number of function callsims implementation
is larger than function calls needed with MPB but they arké sdime magnitude.
We can also observe that the methods produce mainly diffeveakly Pareto
optimal solutions since the average relative distance lotisas in the objective
space is 0.56 varying in the interval from 0.00 to 2.62 ang anice they obtain
the same weakly Pareto optimal solution. In addition, it @&t noting that the
implementation of MPB is the result of long development agstihg process
contrary to the implementation of MSGDB being only the fimplementation.
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Table 5: Results of numerical tests

MSGDB MPB
No.| F1 | F2 | F3 [lter.| f(x*) F | lter. | f(x*)
1.| 24 | 13 3 [(3.147,4.432) 8 7 |(4.106,3.169)
2.1 43 | 29 4 |(7.834,7.200) 12 | 11 |(6.495,10.217)
3. 22 | 17 5 |(2.123,-1.058) 5 4 |(2.030,—1.015)
4. | 52 | 37 11 |(2.135,16.475) 19 | 18 |(2.065,17.736)
5.] 87 | 64 21 |(2.000,24.995) 19 | 18 |(4.274,13.057)
6. 35 | 26 4 |(16.800,7.200) 8 7 1(16.800,7.200)
7.1 14 | 10 2 [(2.814,-0.938) 7 6 [(2.958,—1.068)
8. 12 | 12 3 [(3.500,—0.750) 8 6 |(—1.251,11.280)
9.1 36 | 95 9 |(1.519,11.129) 12 | 11 |(2.645,—4.757)
10.| 27 | 27 4 1(7.200,2.600) 7 6 |(7.424,2.507)
11.| 27 | 39 4 1(7.200,122.800) 15 14 |(7.256,122.439)
12.| 78 | 58 19 |(7.200,49.200) 13 | 12 |(8.582,47.529)
13.| 41 | 107 10 |(—1.386,—0.553) 32 | 31 |(—1.373,—0.856)
14.| 86 | 67 22 |(—1.414,17.678) 18 | 17 |(—1.039,12.471)
15.| 49 | 46 9 |[(4.064,—7.777) 21 | 13 |(—0.978,14.681)
16.| 18 | 12 | 16 | 3 |(7.827,16.793,7.214) 5 4 |(6.331,14.886,10.977)
17.| 93 | 171 | 74 | 24 |(—1.414,-0.707,17.678)| 19 | 18 |(—1.039,—0.665,12.471)
18.] 9 11 | 10 | 2 |[(13.958,12.925,1.379) 7 6 [(16.307,7.618,2.461)
19.| 82 | 64 | 59 | 19 |(2.000,19.000,25.000) 13 | 12 |(2.856,6.212,19.623)
20.| 22 | 9 16 | 2 |(0.325,3.3697,21.199) 4 3 |(3.000,—1.000,12.500)
Av: |42.85/45.70 35.00 9.00 12.60/11.20

5 Conclusions

We have proposed a new descent bundle based method for comvenstrained
multiobjective optimization. The method generalizes gléam the multiple-
gradient descent algorithm and combines them with the prakbundle method.
In order to find a common descent direction for all the obyedtithe idea of
the multiple-gradient descent algorithm is utilized anatder to obtain descent
directions for each objective separately the idea of theipral bundle is used.
Thus in the case of a single-objective function, the seairgittion generated with
MSGDB is similar to the search direction generated with thexjmal bundle
method and in the case of differentiable objective fundiBISGDB is similar to
the multiple-gradient descent algorithm.

We have described the basic idea of MPB as a reference meti&® is
chosen for reference method since it is also a descent méthodultiobjective
optimization utilizing the bundle idea. When in MSGDB thenbie idea is used in
order to find the descent direction for all objectives sefgdyand after that to find
one common descent direction, in MPB all objectives arertaki® consideration
at the same time with the improvement function and the buit#la is used in
order to find a descent direction for this improvement functi

We have seen that the methods described may produce difidirestions
and we cannot say that one would always be better than anodeeording to
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numerical experiments, we have shown that the number ettitgrs needed with
MSGDB is small and the same order that is needed with MPB. Mewehe
number of function calls needs to be improved in the impletatém of MSGDB.
This could be done with better line search algorithm.

In addition, we observed that the methods usually produitereint weakly
Pareto optimal solutions. In interactive methods, it usualuseful to have several
different solutions produced from the same starting poihhus these kind of
descent methods are needed, for example, in interactiveoaet

In order to extend MSGDB in future the aim is to design a metiwbeth is
able to solve also nonconvex and constrained multiobjegiroblems. Another
possible development could be the invocation of the seglgrahlculated search
directions. Since every objective function has own seanattion, those might
be used, for instance, in interactive methods by scalingctions according to
the decision maker’s preferences.
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