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Abstract

The aim of this paper is to propose a new multiple subgradientdescent bundle
method for solving unconstrained convex nonsmooth multiobjective optimization
problems. Contrary to many existing multiobjective optimization methods, our
method treats the objective functions as they are without employing any scalar-
ization. The main idea is to find descent directions for everyobjective function
separately and then form a common descent direction for every objective function.
In addition, we prove that the method is convergent and it finds weakly Pareto op-
timal solutions. Finally, some numerical experiments are considered.
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1 Introduction

Multiobjective nature arises in many practical applications. There are several con-
flicting objectives to be optimized and the aim is to find a compromise between
these different goals being as good as possible for all the objectives at the same
time. The compromise is optimal if we cannot improve any objective without
deteriorating some other. The problems of this kind are called multiobjective
optimization problems and these problems exist in many areas, for example, in
engineering [23], economics [26] and mechanics [24].

The most of the existing multiobjective optimization methods convert the mul-
tiple objectives to the single-objective problem and applysome single-objective
method to solve it. This process is called a scalarization (see e.g. [7, 21]). In this
paper, instead of the scalarization, we are focusing on descent methods employing
the objectives as they are. The method is said to be descent ifat every iteration
it moves to the direction where the values of all objectives improve and the new
iteration points produced give better values for objectivefunctions. For differen-
tiable functions there are several methods of this type described in literature e.g.
[6, 8, 9, 25].

In addition to multiobjective characteristic, many of the real-life problems
have also nonsmooth nature meaning that the functions are not necessarily dif-
ferentiable in classical sense. There are several reasons for the nonsmoothness
of objective functions [2, 17]: first, an objective functionitself can be nondif-
ferentiable as are, for example, piecewise linear tax models in economics [14];
second, some technical constraints may cause a nonsmooth dependence between
the variables and the functions even the objective functions are continuously dif-
ferentiable as in, for instance, obstacle problems in optimal shape design [10];
third, some optimization methods for a constrained problemmay lead to a nons-
mooth problem as, for example, the exact penalty function method [2]; and fourth,
the problem may be analytically smooth but numerically behave like a nonsmooth
problem. Since nonsmooth objective functions are not differentiable we cannot
utilize gradient-based methods to solve the problems.

Bundle methods [2, 11, 12, 13, 17, 20] are considered as the most efficient
way to solve nonsmooth single-objective optimization problems. The idea in these
methods is to approximate the subdifferential (i.e. a set ofgeneralized gradients,
the so-called subgradients [4]) of the objective function with a bundle including
information from the neighborhood of the iteration point. The only assumptions
needed are that one arbitrary subgradient and the value of the objective function
can be evaluated at every point. In order to improve a generalbundle method
for single-objective optimization to a more efficient one the idea of the proximal
bundle method [13, 20] can be utilized. In this method a weighting parameter
has been added to the stabilizing term. The stabilizing termmakes sure that the
approximation of the function is close enough to the iteration point and it also
guarantees the existences of the search directions.
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As noted before, there exists various methods either for smooth (i.e. con-
tinuously differentiable) multiobjective optimization or for nonsmooth single-
objective optimization but only few methods are designed for nonsmooth mul-
tiobjective optimization. Since many multiobjective problems has nonsmooth ob-
jectives, we study here nonsmooth multiobjective optimization. We are focusing
on descent methods employing the objectives as they are. In literature methods
of this kind are described e.g. in [11, 19, 22, 27] where thesemethods utilize
the basic bundle idea. This type of the methods may be applied, for example, in
interactive methods proposed in [22, 25].

In this paper we propose a new multiple subgradient descent bundle method
(MSGDB) for convex nonsmooth multiobjective optimizationproblems. MSGDB
generalizes the ideas of smooth multiple-gradient descentalgorithm [5, 6] which,
in its turn, extends the well-known steepest descent methodfor the multiobjective
problems. The nonsmoothness of the objectives is taken intoaccount by using the
proximal bundle idea. That is, in MSGDB, all the objective functions are first lin-
earized separately and the proximal bundle approach is usedto find subgradients
giving descent directions for each objective function. After that a convex hull of
the subgradients is formed and a minimum norm element is calculated to obtain a
common descent direction for all the objective functions.

We also recall the basic idea of the multiobjective proximalbundle method
(MPB) [19, 22] which is used as a reference method. In the numerical experi-
ments, MSGDB is compared with MPB. Both of these methods forma common
descent direction for every objective function and they arebased on the proxi-
mal bundle approach. However, they utilize the idea of the proximal bundle in
different way. MPB is a generalization of the proximal bundle method utilizing
an improvement function taking all the objectives into account at the same time.
The improvement function is then linearized in order to obtain the descent search
direction [19, 22].

The paper is organized as follows. In Section 2, we recall some basic re-
sults from multiobjective and nonsmooth optimization. Section 3 is devoted to the
methods and we describe the new MSGDB method and for the sake of compari-
son we recall the basic ideas of MPB. Some numerical experiments are given in
Section 4. In conclusion, Section 5, we give some final remarks.

2 Preliminaries

Let us consider an unconstrained optimization problem of the form

min {f1(x), . . . , fm(x)} (1)

s. t. x ∈ R
n,

where ”min” means that all the objective functions are minimized simultaneously.
The objective functionsfi : Rn → R, i = 1, . . . , m are assumed to be convex
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but not necessarily differentiable. Since the objective functions are convex they
are known to be alsolocally Lipschitz continuous[2]. The functionfi is locally
Lipschitz continuous at the pointx ∈ R

n if there existK > 0 andε > 0 such that

|fi(y)− fi(z)| ≤ K‖y − z‖ for all y, z ∈ B(x; ε),

whereB(x; ε) is an open ball with centerx and radiusε.
At first we recall some basic results from multiobjective andnonsmooth opti-

mization. For more details we refer to [2, 4, 7, 20, 21]. Notationx < y is used if
xi < yi for all i ∈ {1, . . . , n} andx ≤ y if xi ≤ yi for all i ∈ {i, . . . , n}.

A solutionx∗ ∈ R
n of the problem (1) is calledPareto optimalif there does

not exist another pointx ∈ R
n such thatfi(x) ≤ fi(x

∗) for all i = 1, . . . , m and
fj(x) < fj(x

∗) for at least one indexj ∈ {1, . . . , m}. This definition means that
no objective can be improved without impairing some other objective at the same
time. Usually there exist several Pareto optimal solutionsbeing all mathematically
equally good.

A generalized concept, calledweak Pareto optimality, is also possible to de-
fine. A solutionx∗ ∈ R

n of the problem (1) is weakly Pareto optimal if there does
not exist another pointx ∈ R

n such thatfi(x) < fi(x
∗) for all i = 1, . . . , m. This

means that there does not exist any other point such that all objective functionsfi
have better values. Clearly every Pareto optimal solution is also weakly Pareto
optimal.

Nonsmooth functions do not have gradient at every point and thus instead of
classical gradient a generalized gradient called subgradient need to be utilized. If
functionfi : Rn → R is convex, then thesubdifferentialof the functionfi at the
pointx is a set

∂fi(x) =
{

ξi ∈ R
n | fi(y) ≥ fi(x) + ξT

i (y − x) for all y ∈ R
n
}

.

A vector ξi ∈ ∂fi(x) is called asubgradientof the functionfi at the pointx.
Later we assume that at least one arbitrary subgradient can be evaluated at every
point for every objective function.

The subgradient of a differentiable convex function is unique and equals to its
gradient as stated in the following theorem.

Theorem 2.1. [2, 20] Let functionfi : Rn → R be convex and differentiable at
the pointx. Then

∂fi(x) = {∇fi(x)} .

The optimization method is called descent if at every iteration it produces a
better solution for the problem (1). In order to find this better solution the concept
of a descent direction is needed. The directiond ∈ R

n is said to be adescent
directionfor functionfi : Rn → R atx if there existsε > 0 such that

fi(x+ td) < fi(x) for all t ∈ (0, ε].

The next theorem shows how descent directions can be found.
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Theorem 2.2. [2, 20] Let functionfi : Rn → R be convex. The directiond ∈ R
n

is a descent direction forfi at the pointx if

ξT
i d < 0 for all ξi ∈ ∂fi(x).

A well-known necessary and sufficient condition for global optimality in con-
vex single-objective case is the following

Theorem 2.3. [2, 20] A convex functionfi : Rn → R attains its global minimum
at the pointx if and only if

0 ∈ ∂fi(x).

The following theorem is the multiobjective counterpart for Theorem 2.3 giv-
ing us necessary and sufficient conditions for (weak) Paretooptimality.

Theorem 2.4. [21] Consider the problem(1). A necessary condition for a point
x to be a (weakly) Pareto optimal solution of the problem(1) is that there exist
multipliersλ ∈ R

m, λ ≥ 0 andλ 6= 0 such that

0 ∈
m
∑

i=1

λi∂fi(x).

The above mentioned condition is also sufficient for weak Pareto optimality and
for Pareto optimality ifλ > 0.

3 Methods

In this section, two different descent methods for multiobjective optimization uti-
lizing the proximal bundle idea are described. The first one is a new MSGDB for
unconstrained convex multiobjective optimization problems. In addition, we re-
call ideas of MPB and use it as a reference method in order to make comparisons
between these two methods.

3.1 Multiple subgradient descent bundle method

MSGDB extends the ideas of the multiple-gradient descent algorithm [5, 6]. This
method, in its turn, is a generalization of the classical steepest descent method for
smooth multiobjective optimization. In the multiple-gradient descent algorithm
the direction of the negative gradient is utilized. This direction is known to be a
descent direction for a smooth function [3, 20]. By knowing the gradients giving
descent directions for every objective separately, a convex hull of these gradients
is formulated. Then the minimum norm element of that convex hull can be found.
The negative direction of this minimum norm element gives a common descent
direction for all the objective functions.
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In the following, we assume that the objective functions arenonsmooth and
thus gradients cannot be employed. Instead of gradients, weutilize subgradients in
MSGDB. However, the gradients cannot be just replaced with subgradients since
there is no guarantee that the opposite direction of an arbitrary subgradient would
be a descent direction [20]. If the whole subdifferential ofthe objective function
was known, the steepest descent direction could be calculated but this is, in most
cases, too demanding requirement in practice. That is why the bundle approach is
utilized in order to find a descent direction.

The basic idea behind the bundle method is to approximate thewhole subdif-
ferential of the objective function by gathering information from the neighborhood
of the iteration point into the bundle. Thus only one arbitrary subgradient from
the subdifferential and the value of the function at each iteration point need to
be evaluated. We refer to [2, 11, 12, 13, 17, 20] for more details about bundle
methods.

Next we present how to calculate descent directions for an individual objective
fi, i = 1, . . . , m. These calculations are performed for every objective separately.
Consider an iteration pointxk at iterationk and some auxiliary pointsyi,j, j ∈ Ji,k

from past iterations, whereJi,k is a nonempty subset of{1, . . . , k}. In addition,
some arbitrary subgradientsξi,j ∈ ∂fi(yi,j) for i = 1, . . . , m andj ∈ Ji,k are
supposed to be known.

The following piecewise linear model also called acutting plane modelis
formed to approximate the functionfi

f̂k
i (x) = max

j∈Ji,k

{

fi(xk) + ξTi,j(x− xk)− αk
i,j

}

for all i = 1, . . . , m, (2)

where the linearization errorαk
i,j is defined by

αk
i,j = fi(xk)− fi(yi,j)− ξTi,j(xk − yi,j) for all j ∈ Ji,k. (3)

The search directiondi,k can then be calculated from formula

di,k = argmin
di∈R

n

{

f̂k
i (xk + di) +

1

2
ui,k ‖di‖

2

}

for all i = 1, . . . , m, (4)

whereui,k is a positive weighting parameter. The term1
2
ui,k ‖di‖

2 is a stabilizing
term guaranteeing the existence and the uniqueness of the solution and keeping
the approximation local enough.

It is possible to rewrite the nonsmooth problem (4) for each objective functions
fi in the following smooth form

min
di∈R

n,vi∈R
vi +

1

2
ui,k ‖di‖

2 (5)

s. t. − αk
i,j + ξT

i,jdi ≤ vi for all j ∈ Ji,k.
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The problem (5) can be made easier and instead of the problem (5) we can solve
its quadratic dual problem

min
λi∈R

1

2ui,k

∑

j∈Ji,k

λi,jξi,j +
∑

j∈Ji,k

λi,jα
k
i,j

s. t.
∑

j∈Ji,k

λi,j = 1

λi,j ≥ 0.

A unique solution of the problem (5) is then of the form [20]

di,k = −
1

ui,k

∑

j∈Ji,k

λi,jξi,j

vi,k = −
( 1

ui,k

∥

∥

∥

∑

j∈Ji,k

λi,jξi,j

∥

∥

∥

2

+
∑

j∈Ji,k

λi,jα
k
i,j

)

.

Next a new auxiliary pointyi,k+1 = xk+di,k and the function valuefi(yi,k+1)
is calculated. The procedure can be stopped and setd∗

i,k = di,k if

fi(yi,k+1) ≤ fi(xk) +mLvi,k, (6)

wheremL ∈ (0, 1

2
) is a line search parameter. Note thatvi,k has the following

form [20]

vi,k = f̂k
i (yi,k+1)− fi(xk)

being a predicted descent of the functionfi at the pointxk. This implies that the
obtained function value at the new iteration point is significantly better than the
function value at the previous iteration point. In bundle methods, if the condition
(6) holds, a new iteration pointxk+1 is calculated and this step is called aserious
step. If the condition (6) does not hold we perform anull step, where the model
will be improved by adding new information to the bundle. This is done by updat-
ing the bundle such that a new index is added to the setJi,k+1 = Ji,k

⋃

{k + 1}.
In addition, the subgradientξi,k+1 ∈ ∂fi(yi,k+1), the trial pointyi,k+1 and the
function valuefi(yi,k+1) are added to the bundle. The iteration point is updated
by settingxk+1 = xk. After that, a new value for the directiondi,k+1 can be
calculated.

Null steps are continued until the condition (6) is satisfiedand the sufficient
descent is reached. It can be proved that the number of null steps is finite until the
sufficient descent is reached [12].

According to Theorem 5.2.8 in [20] for the solutiondi,k of the problem (4)
holds that−di,k ∈ ∂fi(xk) and notation

di,k = −ξ∗

i,k, whereξ∗i,k ∈ ∂fi(xk)
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can be used. Theorem 5.2.8 in [20] also shows that the direction obtained is
descent for the estimated function̂fk

i . The following theorem shows that the di-
rection obtained is descent also for the original objectivefunctionfi.

Theorem 3.1. [20] Let a functionfi : Rn → R be locally Lipschitz continuous at
the pointx. The directiond ∈ R

n is a descent direction for the functionfi at the
pointx if the directiond is a descent direction for the estimated functionf̂i at the
pointx.

Above we have shown how to calculate descent directions for an individual
objective functionsfi, i = 1, . . . , m. Next the calculation of a common descent
direction for all the objective functions is considered.

From Theorem 2.4 the following definition of Pareto stationarity is obtained
to get a generalization of the Pareto optimality.

Definition 3.2. A pointx is said to bePareto stationaryif there exist subgradients
ξi ∈ ∂fi(x) and multipliersλi ≥ 0 for all i = 1, . . . , m,

∑m

i=1
λi = 1 such that

m
∑

i=1

λiξi = 0.

Note that due to Theorem 2.4 in the convex case Pareto stationarity equals to weak
Pareto optimality.

In [6] Lemma 2.1 and Theorem 2.2 were proven to guarantee the functionality
of the multiple-gradient descent algorithm. Same kind of results can be formulated
also for MSGDB as will be shown in Lemma 3.3 and Theorem 3.4.

Lemma 3.3. Letdi = −ξ∗

i with ξi ∈ ∂fi(x) be a descent direction forfi at the
point x for all i = 1, . . . , m. Let C be a set of convex combinations of corre-
sponding subgradients, that is,

C = conv{ξ∗i | i = 1, . . . , m}, (7)

whereconv denotes the convex hull of a set. Then there exists a unique vector
p∗ = argminp∈C ‖p‖ such that

pTp∗ ≥ p∗Tp∗ = ‖p∗‖2 for all p ∈ C. (8)

Proof. If 0 ∈ C, then it is a minimum norm element,x is Pareto stationary and the
statement (8) is trivially valid. Assume that0 /∈ C. SinceC is a nonempty, closed
and convex set, there exists a unique minimum norm elementp∗ ∈ C according
to the closest point theorem [3].

Let a vectorp be an arbitrary element ofC and setr = p − p∗. Due to
convexity ofC we have

λr + p∗ = λp+ (1− λ)p∗ ∈ C for all λ ∈ [0, 1].
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Sincep∗ is the minimum norm element, we have‖λr + p∗‖ ≥ ‖p∗‖ implying

‖λr + p∗‖2 − ‖p∗‖2 = 2λrTp∗ + λ2rTr ≥ 0.

Sinceλ can be arbitrary small we get

0 ≤ rTp∗ = (p− p∗)Tp∗ = pTp∗ − p∗Tp∗

implying the statement (8).

Combining the information from Definition 3.2 and Lemma 3.3 the following
theorem is obtained.

Theorem 3.4.Letdi = −ξ∗

i with ξi ∈ ∂fi(x) be a descent direction forfi at the
pointx for all i = 1, . . . , m. LetC be as in(7) andC◦ be a set of strictly convex
combinations of subgradientsξ∗

i , in other words

C◦ = int conv{ξ∗i | i = 1, . . . , m}.

If a vectord∗ is of formd∗ = −p∗, wherep∗ = argminp∈C ‖p‖, then either we
have

1. d∗ = 0 and the pointx is Pareto stationary.

or

2. d∗ 6= 0 and the vectord∗ is a common descent direction for every objective
function. Moreover, ifp∗ ∈ C◦ thenpTp∗ = ‖p∗‖2 for all p ∈ C.

Proof. Consider the first case. Now the vector−d∗ = p∗ =
∑m

i=1
λ∗

i ξ
∗

i = 0,
λ∗

i ≥ 0 for all i = 1, . . . , m and
∑m

i=1
λ∗

i = 1. Thus the pointx is Pareto
stationary.

Consider then the second case. Now the vector−d∗ = p∗ =
∑m

i=1
λ∗

i ξ
∗

i 6= 0

and thus the pointx is not Pareto stationary. The vectorp∗ is assumed to be
the minimum norm element of the setC. Since alsoξ∗i ∈ C for all i we have
ξ∗Ti p∗ ≥ ‖p∗‖2 > 0 according to Lemma 3.3 and thus for the directiond∗ it holds
ξ∗Ti (d∗) = −ξ∗T

i p∗ < 0. Then according to Theorem 2.2 the directiond∗ is a
descent direction for all functionsfi with i = 1, . . . , m.

Next we prove that if the vectorp∗ ∈ C◦ thenpTp∗ = ‖p∗‖2 for all p ∈ C
of form p =

∑m

i=1
αiξ

∗

i , αi ≥ 0 for all i = 1, . . . , m and
∑m

i=1
αi = 1. With

assumptions of the theorem, the elementp∗ is a solution of the problem

min pTp (9)

s. t.
m
∑

i=1

αi = 1.
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Thus by using a vectorα ∈ R
m the Lagrangian of (9) obtained is

L(α, λ) = pTp+ λ(

m
∑

i=1

αi − 1)

and the vectorα satisfies the following optimality conditions in optimum

dL(α∗, λ∗)

d αi

= 0 for all i, and
dL(α∗, λ∗)

d λ
= 0.

The first condition implies that for every indexi the following holds:

d (pTp)

d αi

+ λ = 0. (10)

Whenp =
∑m

i=1
α∗

i ξ
∗

i , from the equation (10) it follows

d (pTp)

d αi

= 2
( dp

d αi

)T

p = 2(ξ∗

i )
Tp∗ = −λ

and this equation implies thatξ∗T
i p∗ = −λ

2
whenαi > 0 for everyi.

Consider an arbitrary elementp ∈ C such thatp =
∑m

i=1
µiξ

∗

i , whereµi ≥ 0
for all i and

∑m

i=1
µi = 1. Now

pTp∗ =

m
∑

i=1

µiξ
∗T
i p∗ = −

m
∑

i=1

µi

λ

2
= −

λ

2
.

On the other hand, we can choosep = p∗ and thus

‖p∗‖2 = p∗Tp∗ = pTp∗ = −
λ

2
.

The main result of Theorem 3.4 is that the directiond∗ = −p∗ = −
∑m

i=1
λ∗

i ξ
∗

i

is a common descent direction and it can be calculated by solving the problem

min

∥

∥

∥

∥

∥

m
∑

i=1

λiξ
∗

i

∥

∥

∥

∥

∥

2

(11)

s. t.

m
∑

i=1

λi = 1

λi ≥ 0, for all i,

which has a unique solution since the objective function of (11) is strictly convex.
We have now presented a method to calculate a common descent direction for

all the objective functions. A stepsizet can then be calculated as is done in the
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multiple-gradient descent algorithm [6] by formulating functionsgi : R → R for
all i = 1, . . . , m of the form

gi(ti) = fi(xk + tid
∗) for all i. (12)

We apply some line search method in order to find intervals[0, ti], where the
functionsgi are decreasing. By combining this information, an intervalwhere all
the functionsgi are decreasing can be obtained. The end point of this interval is
the stepsizet.

Now we can describe an algorithm for MSGDB. The flow chart of the algo-
rithm is presented in Figure 1.

Algorithm 1. Multiple subgradient descent bundle method (MSGDB)

Step 1: (Initialization) Select the starting pointx1, the line search parameter
mL ∈ (0, 1

2
) and the stopping parameterε > 0. Set an outer iteration

indexl = 1.

Step 2: (Direction finding) Do the following steps for alli = 1, . . . , m to calculate
directionsdi.

Step A: (Initialization) Select the weighting parameterui,1. Set auxiliary point
yi,1 = x1 and a setJi,1 = {1}. Set also an inner iteration indexk = 1.

Step B: (Direction finding) Calculate a directiondi,k from formula (4) and set
yi,k+1 = xk + di,k. If the condition (6) holds, then setdi = di,k.
Otherwise go to step C.

Step C: (Update) SetJi,k+1 = Ji,k

⋃

{k + 1}, calculateξi,k+1 ∈ ∂fi(yi,k+1)
and updateui,k+1. Go to step B.

Step 3: (Common descent direction finding) Calculate a minimum norm elementp∗

of the setC (see (7)) by solving the problem (11). Setdl = −p∗.

Step 4: (Stopping criterion) If ‖dl‖ < ε, then stop.

Step 5: (Line search) Calculate a stepsizet being the largest strictly positive
real number for which all functionsgi (see (12)) are decreasing. Set
xl+1 = xl + tdl and go to step 2.

In practice the size of the bundle need to be limited. The easiest way to do this
is to choose some maximal size for the bundle, for exampleJmax = n + 3. The
setJi,k+1 is updated as in Step C if|Ji,k| < Jmax and if |Ji,k| = Jmax a set

Ji,k+1 = Ji,k

⋃

{k + 1} \ {k − Jmax} (13)

is used. Another possible limiting strategy is the subgradient aggregation strategy
[20]. In Step C, also the parameterui,k+1 is updated and this can be done, for
example with a weight updating algorithm presented in [13].
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Figure 1: Flow chart of MSGDB
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Next we prove that the solution generated by MSGDB is Pareto stationary. As
mentioned before, in case of convex functions Pareto stationarity is equal to weak
Pareto optimality.

Theorem 3.5. Let us consider the problem(1). If MSGDB stops with a finite
number of iterations, then the solution is Pareto stationary. On the other hand,
any accumulation point of the infinite sequence of solutionsgenerated by MSGDB
is Pareto stationary.

Proof. Assume that Algorithm 1 stops with a finite number of iterations and the
stopping parameterε is selected to be zero. Then‖dl‖ = 0 and thusdl = 0.
According to Theorem 3.4 the solution is Pareto stationary.

Suppose then that Algorithm 1 generates the infinite sequence of solutions
{xl} andx∗ is the accumulation point of this sequence. Then there exists a
convergent subsequence{xls} with limit point x∗. Therefore it is known that
ξ∗i,ls ∈ ∂fi(xls) by Algorithm 1. Notate the accumulation point of the sequence
{ξ∗i,ls} by ξ∗

i . This accumulation point exists since the functionfi is locally Lip-
schitz continuous. Thus, there exists an indexŝ such that for all indexess ≥ ŝ
the pointxls ∈ B(x∗, δ) and |fi(xls) − fi(x

∗)| ≤ Ki‖xls − x∗‖, whereKi is
the Lipschitz constant offi. By Theorem 2.1.5 in [20]∂fi(xls) ⊂ B(0, Ki) and
thus the sequenceξ∗

i,ls
is bounded implying that the accumulation point exists. In

addition, according to Theorem 2.1.5 in [20] we haveξ∗

i ∈ ∂fi(x
∗).

Let p∗ be a minimum norm element of the convex hull of subgradients
i.e.p∗ = argmin conv{‖ξ∗i ‖}, i = 1, . . . , m. The vectorp∗ is also the accumula-
tion point of the sequence{pl}, wherepl is of formpl = argmin conv{‖ξ∗i,ls‖},
sinceξ∗i is an accumulation point ofξ∗i,ls. Thusd∗ = −p∗ is the common descent
direction calculated at the pointx∗ according to Theorem 3.4.

If d∗ = 0, then the accumulation pointx∗ is Pareto stationary according to
Theorem 3.4. Let nowd∗ 6= 0 and assume that there exists sequencetl with
accumulation pointt∗. Now there exists an index̂l such that for alll > l̂ we have
1

2
‖t∗d∗‖ being lower bound for‖tldl‖ and thus

∞
∑

l=l̂

‖tldl‖ ≥

∞
∑

l=l̂

1

2
‖t∗d∗‖ = ∞.

Now we can conclude thatx∗ cannot be an accumulation point implying that the
assumptiond∗ 6= 0 does not hold. Thus the accumulation point of the infinite
sequence of solutions is Pareto stationary.
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3.2 Multiobjective proximal bundle method

Next we recall ideas of the multiobjective proximal bundle method [19, 22] which
is a generalization of a single-objective proximal bundle method [13, 20]. It com-
bines the ideas of the proximal bundle and the multiobjective linearization tech-
nique [27].

In MSGDB the problem (1) was approached by calculating descent directions
for every objective function separately by utilizing the bundle idea and then by
combining this information, a common descent direction wasconcluded. In MPB
the bundle idea is also used but in a different way. A common descent search
direction for all the objectives is formed straight with a different linearization
technique. This linearization technique is based on [11, 27].

At first we introduce a concept of improvement function giving a tool to han-
dle several objectives simultaneously. In unconstrained case the improvement
functionH : Rn × R

n → R is defined by

H(x,y) = max
i=1...,m

{fi(x)− fi(y)} . (14)

According to [22] the problem (1) attains a weakly Pareto optimal solution at
the pointx∗ if and only if

x∗ = argmin
x∈Rn

H(x,x∗).

Thus at iterationk we are looking for a directiondk which is a solution of the
problem

min H(xk + d,xk) (15)

s. t. d ∈ R
n.

The problem (15) can be approximated by defining a convex piecewise linear
approximation to improvement function (14). This approximation can be defined
by

Ĥk(x) = max
i=1,...,m

{

f̂k
i (x)− fi(xk)

}

,

where the functionf̂i is the same cutting plane model than in (2). Hence an
approximation for the problem (15) is obtained and a search direction can be cal-
culated by solving the problem

dk = argmin
d∈Rn

{

Ĥk(xk + d) +
1

2
uk ‖d‖

2

}

, (16)

whereuk > 0 is a weighting parameter as in (4). This nonsmooth problem can also
be written as smooth quadratic problem like (5) for MSGDB andthe following
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problem

min v +
1

2
uk ‖d‖

2 (17)

s. t. − αk
i,j + ξT

i,jd ≤ v, for all i = 1, . . . , m, for all j ∈ Jk,

where the linearization errorαk
i,j is defined as in (3). The difference between

problems (5) and (17) is that in the problem (5) there exist constraints only for the
current value ofi and in the problem (17) there exist constraints for every index i.
Likewise the problem (5), the problem (17) can also be dualized to make it easier
to solve.

In MSGDB, the stepsize was the largest positive number such that all the ob-
jective functions are decreasing. In MBP an another algorithm, called two-point
line search strategy, is utilized to calculate stepsize. The aim of the two-point line
search strategy is to find a stepsize0 < tk ≤ 1 such thatH(xk+ tkdk,xk) is min-
imal whenxk+ tkdk ∈ R

n. This stepsize is produced by the line search algorithm
in [20] (pp. 126–130).

The general description of the algorithm of MPB is given below. Here the
weight updating algorithm presented in [13] is used.

Algorithm 2. Multiobjective proximal bundle method (MPB)

Step 1: (Initialization) Select the starting pointx1, the final accuracy tolerance
ε > 0, the weightu1 and line search parameters. Set an iteration index
k = 1.

Step 2: (Direction finding) Calculate the search directiondk from the problem (16).

Step 3: (Stopping criterion) Stop, if stopping criteria−1

2
vk < ε is met.

Step 4: (Line search) Calculate a stepsizetk by using two-point line search strategy
and calculate the new pointxk+1 and the trial pointyk+1.

Step 5: (Update) Add more information to the bundle by evaluating
ξi,k+1 ∈ fi(yi,k+1) and adding a new indexk + 1 to the setJk to
improve the approximation. Update the weight parameteruk+1. Go to step
2.

The solutions of MPB are weakly Pareto optimal as we see in thenext theorem.

Theorem 3.6. [19] Let us consider the problem(1). If MPB stops with a finite
number of iterations, then the solution is weakly Pareto optimal. On the other
hand, any accumulation point of the infinite sequence of solutions generated by
MPB is weakly Pareto optimal.
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4 Computational experiments

In this section, we numerically compare the methods described in Section 3. At
first we compare the search directions generated by the methods in order to notice
that the search directions obtained with different methodsare not necessarily the
same direction. After that, we describe the implementations of the methods and
give some computational examples and analyze the results.

4.1 Comparing search directions

At first we consider two simple examples where we calculate the search directions
which we obtain at the first iteration round. One search direction is calculated
with MSGDB and one with MPB. We apply two different types of weighting
parametersuk, one withuk = 2uk−1, whereu1 = 1 and the other withuk = 1 for
all k. After that, we calculate stepsizes. In these examples in Section 4.1 we use
the exact line search.

Both example problems are of form

min {f1(x), f2(x)} (18)

s. t. x ∈ R
2.

In the first problem the convex objective functions in the problem (18) are

f1(x) =max
{

x2

1 + (x2 − 1)2, (x1 + 1)2
}

f2(x) =max
{

2x1 + 2x2, x
4

1 + x2

2

}

and the function values at the starting pointx1 = (0, 2)T aref1(x1) = 1 and
f2(x1) = 4. We get the results shown in Table 1.

Table 1: The first example

uk = 2uk−1 uk = 1
MSGDB MPB MSGDB MPB

d (0.5000, 0.5000) (0.3824, 0.5294) (0.4000, 0.8000) (0.4000, 0.8000)
t 1.0000 1.0064 1.1335 1.1335
x2 (−0.5000, 0.5000) (−0.3848, 0.5294) (−0.4534, 1.0932) (−0.4534, 1.0932)

f1(x2) 0.5000 0.3785 0.2988 0.2988
f2(x2) 2.3125 0.2923 1.2796 1.2796

In the second problem the convex objective functions in the problem (18) are

f1(x) =max
{

(x1 − 2)2 + (x2 + 2)2, x2

1 + 8x2

}

f2(x) =max
{

5x1 + x2, x
2

1 + x2

2

}
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Table 2: The second example

uk = 2uk−1 uk = 1
MSGDB MPB MSGDB MPB

d (2.0558, 3.0107) (0.4122, 0.1765) (1.9527, 2.9901) (1.8459, 1.5986)
t 0.6077 1.4612 0.6220 0.7628
x2 (−0.2493, 0.1704) (0.3977, 1.7421) (−0.2146, 0.1402) (−0.4081, 0.7806)

f1(x2) 9.7700 16.5700 9.4849 13.5307
f2(x2) 0.2326 3.7306 0.0657 0.7759

and the function values at the starting pointx1 = (1, 2)T aref1(x1) = 17 and
f2(x2) = 7. We get the results shown in Table 2.

From these two examples we can notice that with MSGDB and MPB we do
not necessarily obtain the same search directions. For example in Table 1 we
have two cases with different weighting parameters. In the first case directions
are different and in the second case we obtain the same directions.

In addition we cannot say which one is better way to calculatedirections. As
we see, in the first case of the first example the direction calculated with MPB
gives a better point than the direction calculated with MSGDB. In this case, the
better point refers to the point where both objective functionsf1 andf2 obtain
smaller value. However in both cases of the second example MSGDB gives a
better point than MPB.

Thus based on the way to calculate the search direction we cannot say that one
method is always better than another.

4.2 Implementation and numerical results

In numerical experiments, we have used single-objective convex test problems
CB3, DEM, QL, LQ, Mifflin1 and Wolfe described in [16] and combined these
functions in order to obtain twenty multiobjective problems. The used combina-
tions are described in Table 3. All our test problems are nonsmooth and convex.
The dimension of all test problems is two. In the first 15 problems we have two
objectives and the last five problems have three objectives.

We have used the implementation of MPB described in [18], where two-point
line search algorithm is employed. In MSGDB we apply Armijo type rule [1] as
the line search due to its simplicity. Both the methods are implemented in Fortran.
To make the methods more comparable we have used the same quadratic solver
described in [15] with both methods. In order to update the weighting parameter
uk the weight updating algorithm described in [13] is used. In both methods the
size of the bundle is bounded by using the set (13) and the value ofJmax is chosen
to ben + 3. In following we consider one test problem closer and after that we
analyze the results of several tests.
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Table 3: Test problems

No. Problems No. Problems
1. CB3 & DEM 11. QL & Mifflin1
2. CB3 & QL 12. QL & Wolfe
3. CB3 & LQ 13. LQ & Mifflin1
4. CB3 & Mifflin1 14. LQ & Wolfe
5. CB3 & Wolfe 15. Mifflin1 & Wolfe
6. DEM & QL 16. CB3, DEM & QL
7. DEM & LQ 17. LQ, Mifflin1 & Wolfe
8. DEM & Mifflin1 18. DEM, QL & LQ
9. DEM & Wolfe 19. CB3, Mifflin1 & Wolfe
10. QL & LQ 20. DEM, LQ & Wolfe

Let us take a closer look at the test problem number 3. In that problem objec-
tive functions are combined from test problems CB3 and LQ [16]. Thus objective
functions of the problem (18) are now

f1(x) =max{x4

1 + x2

2, (2− x1)
2 + (2− x2)

2, 2ex2−x1}

f2(x) =max{−x1 − x2,−x1 − x2 + x2

1 + x2

2 − 1}.

The starting point is chosen to bex1 = (2, 2)T , the line search parameter
mL = 0.25 and the stopping parameterε = 10−5. The performance of MSGDB is
described in Table 4, where current points and the function values at those points
are listed at every iteration. As we see, the value of both objective functions de-
creases at every iteration.

Table 4: The performance of the MSGDB algorithm with test problem 3

Iteration x f(x)

1 (2, 2) (20, 3)
2 (1.07040, 2.19346)(6.14850, 1.69316)
3 (1.01611, 1.22948)(2.57763, -0.70149)
4 (0.94961, 1.04304)(2.19586, -1.00295)
5 (0.95189, 0.98783)(2.12303, -1.05782)

The performance of MSGDB in this test problem is also illustrated in Fig-
ure 2. In this figure, gray contours correspond the contours of the first objective
function while dashed gray contours correspond the contours of the second one.
The optimal points of the first and second objective are marked with black and
white square, respectively. The value of the function at theoptimal point of the
first objective isf = (2,−1) and at the optimal point of the second objective
f = (3.34,−1.41). The black point represents the solutionx5 obtained with
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MSGDB and circles are previous iteration points. Now we can see that the solu-
tion obtained is closer to the optimal point of the first objective function than the
optimal point of the second objective function.

f =H20,3L

f =H6.15,1.69L

f =H2.58,-0.70L

f =H2.19,-1.00L
f *=H2.12,-1.06L f =H2,-1L

f =H3.34,-1.41L

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

Figure 2: The performance of the algorithm in decision spacefor testproblem 3

In Figures 3 and 4, the situation, where the algorithm is run ten times with
different starting points is illustrated. In Figure 3, we have solutions obtained in
the decision space marked with black points. Also four pathsof the algorithm are
illustrated with black dashed lines in order to demonstratethe performance of the
algorithm. In Figure 4, these solutions are depicted in the objective space. Again,
in Figures 3 and 4, squares represent single-objective optimal points.

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

x1

x 2

Figure 3: The solutions obtained in decision space for test problem 3 with several
starting points
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Figure 4: The solutions obtained in objective space for testproblem 3 with several
starting points

From Figures 3 and 4 we can observe that the solution obtaineddepends on the
starting point. With different starting points we can generate different (weakly)
Pareto optimal solutions and obtain an approximation of thePareto optimal set.

In Table 5 the optimal function values for all the testproblems obtained with
MSGDB and MPB are described. The same starting points are used and the stop-
ping criteria are set such thatε = 10−5 in both methods. In addition, the number
of iterations and function calls are listed. In the implementation of MPB objective
functions are called at the same time and in the implementation of MSGDB all ob-
jective functions are called separately. Thus there are three function call columns
(F1, F2 and F3) for MSGDB and only one column (F) for MPB in Table 5.

From results in Table 5 we can conclude that the number of iterations are
approximately the same order since according to the resultsthe average iterations
needed for MSGDB is 9.00 and for MPB is 11.20. Even the number of iterations is
slightly smaller with MSGDB, the number of function calls inthis implementation
is larger than function calls needed with MPB but they are still same magnitude.
We can also observe that the methods produce mainly different weakly Pareto
optimal solutions since the average relative distance of solutions in the objective
space is 0.56 varying in the interval from 0.00 to 2.62 and only once they obtain
the same weakly Pareto optimal solution. In addition, it is worth noting that the
implementation of MPB is the result of long development and testing process
contrary to the implementation of MSGDB being only the first implementation.
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Table 5: Results of numerical tests

MSGDB MPB
No. F1 F2 F3 Iter. f(x∗) F Iter. f(x∗)
1. 24 13 3 (3.147, 4.432) 8 7 (4.106, 3.169)
2. 43 29 4 (7.834, 7.200) 12 11 (6.495, 10.217)
3. 22 17 5 (2.123,−1.058) 5 4 (2.030,−1.015)
4. 52 37 11 (2.135, 16.475) 19 18 (2.065, 17.736)
5. 87 64 21 (2.000, 24.995) 19 18 (4.274, 13.057)
6. 35 26 4 (16.800, 7.200) 8 7 (16.800, 7.200)
7. 14 10 2 (2.814,−0.938) 7 6 (2.958,−1.068)
8. 12 12 3 (3.500,−0.750) 8 6 (−1.251, 11.280)
9. 36 95 9 (1.519, 11.129) 12 11 (2.645,−4.757)
10. 27 27 4 (7.200, 2.600) 7 6 (7.424, 2.507)
11. 27 39 4 (7.200, 122.800) 15 14 (7.256, 122.439)
12. 78 58 19 (7.200, 49.200) 13 12 (8.582, 47.529)
13. 41 107 10 (−1.386,−0.553) 32 31 (−1.373,−0.856)
14. 86 67 22 (−1.414, 17.678) 18 17 (−1.039, 12.471)
15. 49 46 9 (4.064,−7.777) 21 13 (−0.978, 14.681)
16. 18 12 16 3 (7.827, 16.793, 7.214) 5 4 (6.331, 14.886, 10.977)
17. 93 171 74 24 (−1.414,−0.707, 17.678) 19 18 (−1.039,−0.665, 12.471)
18. 9 11 10 2 (13.958, 12.925, 1.379) 7 6 (16.307, 7.618, 2.461)
19. 82 64 59 19 (2.000, 19.000, 25.000) 13 12 (2.856, 6.212, 19.623)
20. 22 9 16 2 (0.325, 3.3697, 21.199) 4 3 (3.000,−1.000, 12.500)
Av: 42.85 45.70 35.00 9.00 12.60 11.20

5 Conclusions

We have proposed a new descent bundle based method for convexunconstrained
multiobjective optimization. The method generalizes ideas from the multiple-
gradient descent algorithm and combines them with the proximal bundle method.
In order to find a common descent direction for all the objectives the idea of
the multiple-gradient descent algorithm is utilized and inorder to obtain descent
directions for each objective separately the idea of the proximal bundle is used.
Thus in the case of a single-objective function, the search direction generated with
MSGDB is similar to the search direction generated with the proximal bundle
method and in the case of differentiable objective functions MSGDB is similar to
the multiple-gradient descent algorithm.

We have described the basic idea of MPB as a reference method.MPB is
chosen for reference method since it is also a descent methodfor multiobjective
optimization utilizing the bundle idea. When in MSGDB the bundle idea is used in
order to find the descent direction for all objectives separately and after that to find
one common descent direction, in MPB all objectives are taken into consideration
at the same time with the improvement function and the bundleidea is used in
order to find a descent direction for this improvement function.

We have seen that the methods described may produce different directions
and we cannot say that one would always be better than another. According to
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numerical experiments, we have shown that the number of iterations needed with
MSGDB is small and the same order that is needed with MPB. However, the
number of function calls needs to be improved in the implementation of MSGDB.
This could be done with better line search algorithm.

In addition, we observed that the methods usually produce different weakly
Pareto optimal solutions. In interactive methods, it usually is useful to have several
different solutions produced from the same starting point.Thus these kind of
descent methods are needed, for example, in interactive methods.

In order to extend MSGDB in future the aim is to design a methodwhich is
able to solve also nonconvex and constrained multiobjective problems. Another
possible development could be the invocation of the separately calculated search
directions. Since every objective function has own search direction, those might
be used, for instance, in interactive methods by scaling directions according to
the decision maker’s preferences.
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