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The problem

Z s(R) : f (x) = (f1(x), . . . , fs(x))→ min
x∈X

, s ≥ 1,

of finding Pareto set

Ps(R) = {x ∈ X : @x ′ ∈ X (f (x) ≥ f (x ′) & f (x) 6= f (x ′))}.

2 / 17



Multicriteria investment Boolean problem with Savage’s minimax criteria:

fk(x) = max
i∈Nm

∑
j∈Nn

rijkxj → min
x∈X

, k ∈ Ns .

Ns = {1, 2, . . . , s} – the set of risks (financial, environmental, industrial
etc.);
Nn – the set of investment projets;
Nm – the set of possible financial market states (situations);
rijk – the value of risk k ∈ Ns of investment project j ∈ Nn in the
situation, when the market is in state i ∈ Nm;
R = [rijk ] ∈ Rm×n×s – the three dimensional risk matrix;
x = (x1, x2, . . . , xn) ∈ {0, 1}n – the investment portfolio, where xj = 1, if
projet j ∈ Nn is implemented, and xj = 0 otherwise;
X ⊆ {0, 1}n – the set of possible portfolios;∑
j∈Nn

rijkx
0
j – the risk of type k which an investor takes, investing in

portfolio x0 in the case when the market is in state i .
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Example

Let m = 2, n = 3, s = 2,

X = {x1, x2, x3}, x1 = (1, 1, 0), x2 = (1, 0, 1), x3 = (0, 1, 1),
the matrix R ∈ R2×3×2 with cuts Rk ∈ R2×3, k ∈ N2:

R1 =

(
1 0 0
0 1 2

)
, R2 =

(
2 1 0
0 0 1

)
.

Then
f (x1) = (1, 3),

f (x2) = (2, 2),

f (x3) = (3, 1),

P2(R) = {x1, x2, x3}.
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The stability radius of a Pareto-optimal portfolio x0 of the problem Z s(R):

ρs,mp (x0,R) =

{
sup Ξ, if Ξ 6= ∅,
0, if Ξ = ∅,

where
Ξ = {ε > 0 : ∀R ′ ∈ Ω(ε) (x0 ∈ Ps(R + R ′)},

Ω(ε) = {R ′ ∈ Rm×n×s : ‖R ′‖ppp < ε},

‖R ′‖ppp =
∥∥∥(‖R ′1‖pp, ‖R ′2‖pp, . . . , ‖R ′s‖pp)∥∥∥

p
−

the norm of the matrix,

‖Rk‖pp = ‖(‖R1k‖p, ‖R2k‖p, . . . , ‖Rmk‖p)‖p, k ∈ Ns ,

‖a‖p =


(∑

k∈Ns
|ak |p

)1/p
, if 1 ≤ p <∞,

max{|ak | : k ∈ Ns}, if p =∞,
a = (a1, a2, . . . , as) ∈ Rs .
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Theorem. Let

ϕ(x0) = min
x∈X\{x0}

‖[f (x)− f (x0)]+‖p
‖x • x0‖q

,

ψ(x0) = min
x∈X\{x0}

‖[f (x)− f (x0)]+‖p
‖x − x0‖q

,

then for 1 ≤ p ≤ ∞, s, m ∈ N,

ϕ(x0) ≤ ρs,mp (x0,R) ≤ m1/pψ(x0).

Here
x • x0 = (x1, x2, . . . , xn, x

0
1 , x

0
2 , . . . , x

0
n ),

[a]+ = (a+1 , a
+
2 , . . . , a

+
s ), a+k = max{0, ak}, k ∈ Ns ,

1/p + 1/q = 1.
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)
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f (x3) = (3, 1),

P2(R) = {x1, x2, x3}.

For 1 ≤ p ≤ ∞

ϕ(x1) = 2−2+3/p,

ψ(x1) = 2−1+2/p.

For p =∞

ϕ(x1) = 1/4,

ψ(x1) = 1/2.
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Corollary 1. If for any x ∈ X \ {x0} exists no h ∈ Nn such that xh = x0h ,
then for p =∞, m ∈ N

ρs,m∞ (x0,R) = ϕ(x0) = ψ(x0) = min
x∈X\{x0}

‖[f (x)− f (x0)]+‖∞
‖x − x0‖1

.

Corollary 2 [1]. For 1 ≤ p ≤ ∞, m = 1

ρs,1p (x0,R) = ψ(x0) = min
x∈X\{x0}

‖[R(x − x0)]+‖p
‖x − x0‖q

.

[1] Emelichev, V.A., Kuz’min, K.G.: A general approach to studying the stability of a Pareto optimal solution of a vector integer

linear programming problem. Discrete Mathematics and Applications 17, 349–354 (2007)
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Corollary 1. If for any x ∈ X \ {x0} exists no h ∈ Nn such that xh = x0h ,
then for p =∞, m ∈ N

ρs,m∞ (x0,R) = ϕ(x0) = ψ(x0) = min
x∈X\{x0}

‖[f (x)− f (x0)]+‖∞
‖x − x0‖1

.

Corollary 2 [1]. For 1 ≤ p ≤ ∞, m = 1

ρs,1p (x0,R) = ψ(x0) = min
x∈X\{x0}

‖[R(x − x0)]+‖p
‖x − x0‖q

.
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Thank you for your attention!
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